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4.1 Introduction

e Shock is defined as the small forcing function or excitation as
compared to the natural time period of the system.

« Some examples of general forcing functions include the motion
imparted by a cam to the follower; the vibration felt by an
instrument when its package is dropped from a height; etc.

e« The transient response of a system can be found by using what is
known as the convolution integral.
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4.2
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4.2 Response Under a General Periodic Force

« The equation of motion can be expressed as

M+ + kx = F(£) = “—20+ Sa,cos jor+ b, sin jor  (4.8)
j=1 J=1

e The steady-state solution of the equation is derived as:

xp(t)=&+§, @, /6 cos(jat—¢,)
2k == )+ 2gr)
. (b, / k)

sin(jwt —¢,)

+2
== 2+ (24r)
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation

Find the total response of a viscously damped single degree of
freedom system subjected to a harmonic base excitation for the
following data:

m=10kg, c¢=20N-m/s, k=4000N/m,
y()=0.05sn5 m, x,=0.02m, x,=10m/s.
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation
Solution

The equation of motion of the system is given by:

mx+cx+kx=ky+cy=kYsmawt+cwoYcoswt (E.1)

The steady-state response of the system can be expressed as

x, ()= \/(l = rz)zl 7YY ﬁ; cos(awt —¢,) + % sin(wt — ¢1)} (E.2)
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation

Solution
/400
We have, Y =0.05m, w=>5rad/s, o, —\/7 =20rad/s,
p=? =2 _025 =S =0.05,
w20 ° c, 2«/km 2¢(4000)(10)

=\J1-¢?w, =19.975 rad/s
a, = caY =(20)(5)(0.05) =5, b, = kY = (4000)(0.05) = 200,

¢ = tan_ILZ(O.OS)(OQzS)J =0.02666 rad
1-(0.25)

JA=7)? + (287 =+/(1-0.25%)7 +(2(0.05)(0.25))* =0.937833
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation
Solution

The solution of the homogeneous equation is given by:
x,(t)=X,e " cos(w,t —c=X,e " cos(19.975t—¢,) (E.3)

where X, and ®, are unknown constants
The total solution can be expressed as the superposition of x,(t) and

X,(t) as: 1 200
p » :
x(t)=X.e cos(19.975¢— + cos(S5t—a@ )+ sin(5¢ —
(=X, ( Q 0.937833[4000 (1=) 4000 ( ¢1)}
= X, e c0s(19.975¢ — ¢, ) +0.0013333 cos(5¢ — 0.026666)
+0.053314sin(5¢ — 0.026666) (E.4)
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4.2 Response Under a General Periodic Force

Example 4.5

Total Response Under Harmonic Base Excitation
Solution

Using Egs.(E.4) and (E.5), we find
x, (1) = x(t =0) = 0.02 = X, cos ¢, +0.001333c0s(0.02666) —0.0533 14sin(0.02666)
X, cosg, =0.020088 (E.6)

%, =%(t=0)=10=—X, cos¢, +19.975X, sin ¢,
+0.006665sin(0.02666) + 0.266572 cos(0.02666)

— X,cos@, +19.975sin ¢, =9.733345 (E.7)
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4.2 Response Under a General Periodic Force

Example 4.5

Total Response Under Harmonic Base Excitation
Solution

The solution of (E.6) and (E.7) yields X,=0.488695 and ©,=1.529683
rad.

Thus the total response of the mass under base excitation, in meters,
is given by

x(¢) = 0.488695¢ ™" cos(19.975¢ —1.529683)
+0.001333 cos(5¢ — 0.02666) +0.0533 14sin(5¢ — 0.02666)  (E.8)
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4.3
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4.3 Response Under a Periodic Force of Irregular
Form

e In some cases, the force acting on a system may be quite irregular
and may be determined only experimentally.

e The application of trapezoidal rule gives:

23 F 4.9
ad, = — - .
0 Nzl l ( )
N ot
¢ =23 Feos2t™ =12, (4.10)
/ Nl—l T
28 . 2jm
=—> F.sIn o 7=12,... 4.11
b, szi T / (411
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4.3 Response Under a Periodic Force of Irregular
Form

e An irregular forcing function:

F(f)h
Fs
"
/ [N ’ \\
7 - I \-'a-‘
[ | ~ Iar ! \\
N—1 !
! Y 1 Y
ArAr A Fy A i "
Ry NE e
y. [ A Y
fl l') f}"f_‘ fq FN'—]\ f\, Fi \\21’
S ’ ) \ / \
~ L F-\ i
}*'F} - ‘-..-’,
I
- - T = NAt >

« Once the Fourier coefficients a,, a;, and b; are known, the steady-
state response of the system can be found using Eq.(4.13) with

2
= —
=

16 © 2018 Mechanical Vibrations Sixth Edition in SI Units PEA RSO N




4.3 Response Under a Periodic Force of Irregular
Form

Example 4.6
Steady-State Vibration of a Hydraulic Valve

Find the steady-state response of the valve in the figure below if the
pressure fluctuations in the chamber are found to be periodic. The
valves of pressure measured at 0.01 second intervals in one cycle are
given below.

Time,t; 0 0.01 002 003 004 005 006 007 008 009 0.10 0.11 0.12
(seconds)

pi = p(t) 0 20 34 42 49 53 70 60 36 22 16 7 0
(kN/m?)
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4.3 Response Under a Periodic Force of Irregular
Form

Example 4.6
Steady-State Vibration of a Hydraulic Valve
Solution

Since the pressure fluctuations on the valve are periodic, the Fourier
analysis of the given data of pressures in a cycle gives:
p(t) =34083.3-26996.0co0s52.36¢ +8307.7sin 52.36¢
+1416.7cos104.72¢t +3608.3sin104.72¢

~5833.3¢0s157.08t +2333.35in157.08¢ +...N/m*>  (E.1)

Other quantities needed for the computation are

0="—2" _5)36radls ., @ =100tadls , r=-2=05236

r 0.12 0,

n
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4.3 Response Under a Periodic Force of Irregular

Form

Example 4.6
Steady-State Vibration of a Hydraulic Valve
Solution

We have also
=02
A=0.0006257 m*

[ 20r j: tan_l(zxo.zxo.szséj 1610

= tan™
4 1— 2 1-0.5236>

4 A
¢2=tan_1 44’1’2 _ tan! 4><O.2><O.52326 _ 77010
1—4r 1-4x0.5236%

’ :tan_l( 6(7 :tan_1(6x0.2><0.5236\:_23.180

’ 1-97% 1-9x0.5236>
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4.3 Response Under a Periodic Force of Irregular
Form

Example 4.6
Steady-State Vibration of a Hydraulic Valve

Solution

The steady-state response of the valve can be expressed as

(8309.74/k)
JA=r)2 + (28

. (3608.34/k)
JA=4r2) +(44) JA=4r2) +(4¢r)
(5833.34/k)

- cos(157.08¢ — g ) 4 —— 233334 K)
Ja=ory" 60 V=97 +(6¢7)°

34083.34 (26996.04/k)

ko Ja-r) oy
(1416.74/k)

sin(52.36¢t —¢,)

cos(52.36t —¢,) +

x, ()=

sin(104.72¢t - ¢,)

cos(104.72t —¢,) +

sin(157.08¢ —¢,)
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4.4

21 © 2018 Mechanical Vibrations Sixth Edition in SI Units P EA RS O N




4.4 Response Under a Nonperiodic Force

« When the exciting force F(t) is nonperiodic, such as that due to the
blast from an explosion, a different method of calculating the
response is required.

e Various methods can be used to find the response of the system to
an arbitrary excitation.

« Some of these methods are as follows:

. Representing the excitation by a Fourier integral

. Using the method of convolution integral

. Using the method of Laplace transforms

. First approximating F(t) by a suitable interpolation model and
then using a numerical procedure

5. Numerically integrating the equation of motion

AW N =
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4.5
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4.5 Convolution Integral

« We have

Impulse = FAt =mx, —mx, (4.12)

e By designating the magnitude of the impulse FAf¢ by F, we can
write, in general,

F

" Fdt (4.13)

o A unit impulse is defined as

f=lm["™Fdt=Fdt=1 (4.14)

At—0
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4.5 Convolution Integral

« Response to an impulse

For an underdamped system, the solution of the equation of motion

mx+cx+kx=0 (4.17)
is given by
~Cot )'CO + éla)nxo .
x(t)=e " {xo Cos @, t + sin codt} (4.18)
@,
where ¢=—S"—  (4.19)
2mw
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4.5 Convolution Integral

« Response to an impulse

(1) x(1) = g(1)

A A
e F !
c |- k T~ N
=1 0 /\v __—-_ > |
m - -
O > 1 /,/2‘7 |
F(r)
(a) (b) (c)

A single-degree-of-freedom system subjected to an impulse
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4.5 Convolution Integral

« Response to an impulse

If the mass is at rest before the unit impulse is applied, we obtain,
from the impulse-momentum relation,

Impulse = f =1=mx(t =0)—mx(¢ =0") = mx, (4.22)
Thus the initial conditions are given by

x(t=0)=x,=0 (4.23)

Me=0)=% = (424)
m
Hence, Eq.(4.18) reduces to
—Cw),t
X(0)=g(t)=——sinw,t  (4.25)
mao,
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4.5 Convolution Integral

« Response to an impulse

If the magnitude of the impulse is F instead of unity, the initial
velocity x, is F'/m and the response of the system becomes

Fe <
x(t) = sin w,t = Fg(t) (4.26)
mao,

If the impulse is applied at an arbitrary time t = 7, it will change the
velocity at t = 7, shown in Fig.4.4(a). Thus,

x(t)=Feg(t—1) (4.27)
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4.5 Convolution Integral

« Response to an impulse

F(1)
)
F —————————— i
FAt=F
e
{
G " -
IR SR— —
(a)
x(r)
~
| Fg(t—)

(b) Impulse Response
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4.5 Convolution Integral

Example 4.7
Response of a Structure Under Impact

In the vibration testing of a structure, an impact hammer with a load
cell to measure the impact force is used to cause excitation, as shown
in Fig.4.5(a). Assuming m = 5kg, k = 2000 N/m, ¢ = 10 N-s/m and

F = 20 N-s, find the response of the system.

Load cell & T
signal, >x(1)
. . m

E(1)

— AN

Impact
hammer

F(t) | l
2 = |
£ h i 7

0 >l 777 TS 77 (b)
(a)

b =
STES

30 © 2018 Mechanical Vibrations Sixth Edition in SI Units P EA RS O N



4.5 Convolution Integral

Example 4.7

Response of a Structure Under Impact
Solution

From the known data,

wn=ﬁ=1/w=20rad/s, ¢ = c__ ¢ - 10 =0.05,
m 5 c. 2vkm 2,/2000(5)

c

w, =1-¢®, =19.975rad/s

Assuming that the impact is given at t = 0, the response of the system

e 20
sin w,t =
mao, (5)(19.975)

x,(t)=F e " 5in19.975¢ = 0.20025¢ ' sin19.975¢tm  (E.1)
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4.5 Convolution Integral

« Response to General Forcing Condition

Consider the response of the system under an arbitrary external
force, the response is given by

Ax(t)=F(r)Arg(t—7) (4.28)

F(r)
‘l

T T+ ATt
An arbitrary (nonperiodic) forcing function
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4.5 Convolution Integral

« Response to General Forcing Condition

The total response at time t can be found by summing all the
responses due to the elementary impulses acting at all times 7 :

x(t) =Y F(o)g(t—1)Ar (4.29)

Letting A7 — (0 and replacing the summation by integration, we
obtain

() = —— [F(r)e ™ Osinw,(t-r)dr  (4.31)
mao,

which is called the convolution or Duhamel integral
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4.5 Convolution Integral

« Response to Base Excitation

For an undamped system subjected to base excitation, the relative
displacement can be as

z(t) =— 1 Jo J(0)e ' sinw, (t—7)dr  (4.34)

oF

where the variable z replacing x
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4.5 Convolution Integral

Example 4.12
Compacting Machine Under Linear Force

Determine the response of the compacting machine shown in Figure
(a) when a linearly varying force (shown in Figure (b)) is applied due
to the motion of the cam.

Motion of __ ‘ - - F(I) F(t)
am ) s Nim—rr A 2
Follower —| ~ o f -
F) =
| 5F “]sF
1 = 1 k

: (
%‘ Material
mn being compacted > [ I I > [
x(t) <— Platform 0 0 2ar 4 6
wy Wy Wy
ki2 - ki2
b e
. (b) ©)
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4.5 Convolution Integral

Example 4.12
Compacting Machine Under Linear Force
Solution

Figure (b) is known as the ramp function.

F :
x(t) = 5—[5 e " sinw, (t—7)dr
mao,
OF .
=——[(t- r)e " sinw, (t—7)(~d7)
mao,
_OF -t

I —¢w,(t—-7)
fie ™" sinw,(t-7)(—dr)
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4.5 Convolution Integral

Example 4.12
Compacting Machine Under Linear Force

Solution

These integrals can be evaluated and the response expressed as
follows:

x(t) = %{t _2% +e [2—5 Cos @t — {a)j _24/20)’3 }sin a)dtﬂ (E.1)

) @ .0,

n n

For an undamped system, Eq.(E.1) reduces to

x(t) = oF [a)nt —sin a)nt] (E.2)
w k

Fig. 4.13(c) shows the response given by Eq.(E.2)
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4.6
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4.6 Response Spectrum

e The graph showing the variation of the maximum response
(maximum displacement, velocity, acceleration, or any other
quantity) with the natural frequency (or natural period) of a single

degree of freedom system to a specified forcing function is known
as the response spectrum.

e Example 4.14 illustrates the construction of a response spectrum.
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse

Find the undamped response spectrum for the sinusoidal pulse force
shown in the figure using the initial conditions
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse
Solution

The equation of motion of an undamped system can be expressed as

B F, sin o, 0<¢t<¢,
mx+kx=F(t)= (E.1)
0, t>t,
where w :t£ (E.2)
0
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse
Solution

Superimposing the homogeneous solution x.(t) and the particular
solution x,(t),

x(£) = x, () + x, (1) (E.3)
: k. :
x(t) = Acosw, t+ Bsinm,t + ( *— jsm ot (E.4)
k—mo
where @, = 2 = * (E.5)
T m

n

42 © 2018 Mechanical Vibrations Sixth Edition in SI Units P EA RS O N



4.6 Response Spectrum

Example 4.14

Response Spectrum of a Sinusoidal Pulse
Solution

Using the initial conditions, the constants can be found:
Fo

A=0, B=-o O (EO
Thus, @, (k=ma
F . :

x(t) = o 'k —<sin ot ~ 2 in e, 0<t<t, (E.7)
l1-(w/w,) @,

x(0) = 1 5 sinﬂ— L sinz—m , 0<1<1, (E.8)

5st Tn Z‘0 2Z‘O z-n F
o where 5, == (E.9)
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse
Solution

The solution can be expressed as a free vibration solution
x(t)=A'coswt+B'sinwt, t>t, (E.10)

where the constants can be found by:

. 2m :
x(t=t)=a| ——Lsin—=> |=A'cosw t, + B'sinw,t, (E.11)
21, T,
: T T 27t , ,
X(t=t))=ay———cos— } =—w A'smwt+w Bcosot (E.12)
Lo L Ty
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse

Solution
Where o = Ou > (E13)
o)

04 . 04
Hence, i sin ¢, B =_%" [1+cosa)nt0] (E.14)

a)nto a)ntO
Therefore, x(2) _ (7, /1) sin 271 1 —sin 27Z'L

o, 2{1—(Tn /2t0)2} T, T, T ’

t>t, (E.15)
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4.6 Response Spectrum

e Response Spectrum for Base Excitation

For a harmonic oscillator (an undamped system under free
vibration), we notice that

2
=— X

max n

=, X

max n- Imax

X and X

max

Thus, the acceleration and displacement spectra can be obtained:

S, =2 S =wS (4.38)
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4.6 Response Spectrum

e Response Spectrum for Base Excitation

The velocity response spectrum can be obtained:

e—g"a)nt

-2

max

S, =|2(1)

(4.44)

max

Thus the pseudo response spectra are given by:

=S"; S:‘z'
0,

n

Sdz‘z

; S :‘Z

max a

~wS (4.45)

max max n—v
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4.6 Response Spectrum

o Earthquake Response Spectra

The most direct description of an earthquake motion in time
domain is provided by accelerograms that are recorded by
instruments called strong motion accelerographs.

A typical accelerogram is shown in the figure below.

500 —

Acceleration
cm/s

—500 I | | | I_ l > Time (s)
0 ; : 30
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4.6 Response Spectrum

e Earthquake Response Spectra

A response spectrum is used to provide the most descriptive
representation of the influence of a given earthquake on a structure
of machine. It is possible to plot the maximum response of a single
degree freedom system using logarithmic scales.
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4.6 Response Spectrum

Example 4.17
Derailment of Trolley of a Crane During Earthquake

The trolley of an electric overhead traveling (EOT) crane travels
horizontally on the girder as indicated in the figure. Assuming the
trolley as a point mass, the crane can be modeled as a single degree
of freedom system with a period 2 s and a damping ratio 2%.

Determine whether the trolley derails under a vertical earthquake
excitation.
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4.6 Response Spectrum

Example 4.17
Derailment of Trolley of a Crane During Earthquake

PEARSON



4.6 Response Spectrum

Example 4.17
Derailment of Trolley of a Crane During Earthquake
Solution

For 7o =2sand (= 0.02, Fig.4.16 gives the spectral acceleration as
Sa = 0.25 g and hence the trolley will not derail.
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4.6 Response Spectrum

e Design Under a Shock Environment

When a force is applied for short duration, usually for a period of
less than one natural time period, it is called a shock load.

A shock may be described by a pulse shock, velocity shock, or a
shock response spectrum. The pulse shocks are introduced by
applied forces or displacements in different forms.

A velocity shock is caused by sudden changes in the velocity. The
shock response spectrum describes the way in which a machine or
structure responds to a specific shock.
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4.6 Response Spectrum

e Design Under a Shock Environment

- - -
(a) Half-sine pulse (b) Triangular pulse (c) Rectangular pulse

Typical shock pulses
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads

A printed circuit board (PCB) is mounted on a cantilevered aluminum
bracket, as shown in Figure (a). The bracket is placed in a container
that is expected to be dropped from a low-flying helicopter. The
resulting shock can be approximated as a half-sine wave pulse, as
shown in figure (b). Design the bracket to withstand an acceleration
level of 100g under the half-sine wave pulse shown in figure (b).
Assume a specific weight of 30 kN/m3, a Young’s modulus of 70 GPa,
and a permissible stress of 180 MPa for aluminum.
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads

PCB, weight 2N Acceleration
) A
7 A d
f I
7 100g -
7 ! , YA/,
: e
- - > mm
A | Section A-A
0.3 m >| 0 > |
1 ‘ 4
I(] =(.1s
(a) (b)
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

The self-weight of the beam is given by
w=(0.3)(0.015xd)(30x10°)=135d

The total weight is

W = Weight of beam + Weight of PCB =135d +2
The area moment of inertia of the cross section of the beam is

I :éx0.0ISxaﬂ =0.001254°
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

The static deflection of the beam can be obtained

Wb (135d +2)(0.3)°

¢ 135d +2
T 3EI 3%(70x10%)(0.00125d%)

d3

=(1.0286x107"")

We adopt a trial and error procedure to determine the values of
unknown.
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

Assuming d = 10 mm,
135x0.01+2

5, =(1.0286x107") ——=3.446x10"" m
We have 1
—4
r =2 | =27z\/3‘466xm =0.037265
Hence, g
h_ 01 5 e
r. 0.03726

n
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

The dynamic load acting on the cantilever is given by:

P, =AMa, = (1.1)(2)(1005;) =368.5N
g

The maximum bending stress at the root of the cantilever bracket can

be computed as:

(368.5x0.3)(0'01

o = M = = 2 j =442.2 MPa
I/ 1.25x10
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

Since this stress exceeds the permissible value, we assume the next
trial value of d as 20 mm. This yields:

135x0.02+2

5. =(1.0286x10™") =6.0430x10° m

0.02°
-5
r =27 O =27z\/6'0430X10 =0.01560 (s)
g
th _ 01 ‘4
. 0.01560

n
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

The dynamic load can be determined:
P, =AMa, = (1.1)(4ij(100g) =517 (N)
g

The maximum bending stress at the root of the bracket will be:

(517x0.3)(w

o, = Mye _ - 2 j =155.1MPa
1 10~

Since this stress is within the permissible limit, the thickness of the bracket
can be taken as 20 mm.
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4.7
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4.7 Laplace Transforms

e The Laplace transform of a function x(t) is defined as:
x(t=0)lim[sX(s)] (4.46)

e The general solution can be expressed as

X ot - x() —Cw,t -
x(¢) = e ' sin(wt+ ) +—Le " sinw,t
(1-27) ay
1 o (t—7) -
+—jéF(r)e sen (1 )sma)d(t—r)dr
mo,
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4.8
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4.8 Numerical Methods

The determination of the response of a system subjected to
arbitrary forcing functions using numerical methods is called
numerical simulation.

Numerical simulations can be used to check the accuracy of
analytical solutions, especially if the system is complex.

Several methods are available for numerically integrating ordinary
differential equations.

The Runge-Kutta methods are quite popular for the numerical
solution of differential equations.
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4.9
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4.9 Response to Irregular Forcing Conditions Using
Numerical Methods

e |et the function vary with time in an arbitrary manner. The
response of the system can be found:

-1
x(1) = %Jz AF{I — e ) i {cos w,(t—t)+ L sin @, (t — tl.)H

F(1)
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4.9 Response to Irregular Forcing Conditions Using
Numerical Methods

e Thus the response of the system at t = {; becomes

1 = —Co. (t.—t. .
X; :—]ZAFZ.[I—e oon 1710 x{cosa)d(tj —t.)+ L sin @, (¢ —tl.)H

e e
/\ Fiy
AFs
N\
e ¥ F¢
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4.9 Response to Irregular Forcing Conditions Using
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods

Find the response of a spring-mass-damper system subjected to the
forcing function

F(f) = Fo[l _sin 2%} (E.1)

in the interval 0<t<t, . using a numerical procedure.

Assume F,=1, k=1, m=1, (=0.1, and t0=T1,/2, where T, denotes the
natural period of vibration given by

T = 27 = 27 — =2z (E.2)
w (k/m)

n

The values of x and X at t=0 are zero
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4.9 Response to Irregular Forcing Conditions Using
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods
Solution

For the numerical computations, the time interval O to t; is divided
into 10 equal steps with

At =0 =" i=23,..11 (E.3)

4 different methods are used to approximate the forcing function F(t).
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4.9 Response to Irregular Forcing Conditions Using
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods

Solution

In the figure, F(t) is approximated by a series of rectangular impulses,
each starting at the beginning of the corresponding time step.

E(1)

1.00

0.75 —

050 o=

|5 =
(S1E]
|
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4.9 Response to Irregular Forcing Conditions Using
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods
Solution

In Fig. 4.36, piecewise linear (trapezoidal) impulses are used to
approximate the forcing function F(t). The numerical results are given
in Table 4.2. The results can be improved by using a higher-order
polynomial for interpolation instead of the linear function.
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4.9 Response to Irregular Forcing Conditions Using
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods

Solution
F o TABLE 4.2 Response of the system
[ AF, = F,— F; = 0.8436 — 1.0000 i t; x(t;) Obtained According to
1 0 L1:0000 PR SRRt SR Fig. 4.36 (Idealization 4)
208436 iFn =4 ‘zpio]= 0.00000 — 0.01231 1 0 0.00000
08| §=16:1=2,
5 — " 2 Olw 0.04541
— | - F, = 1.0000
L1 1 Nee 4 03w 0.32499
! ;
ol i1 i 0.4122 i 10~ 8'0123] 5 0.47 0.49746
: | | | 11 00000
L1 i | 02929 6 0.57 0.65151
oz 11 TN\0910 7 0.6 0.76238
AR . o1 g O 0.81255
| I A
A [ o 9 087 0.79323
I L ¢t ! ! f f I fg t
e 2 3 4 5 6 o B2 92 o 000000 10 097 0.70482

0 36 % 70 70 0 10 10 10 10 7

0.55647

S|
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