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Chapter 4 Vibration Under General Forcing Condition
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4.1
Introduction
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4.1 Introduction

• Shock is defined as the small forcing function or excitation as 
compared to the natural time period of the system.

• Some examples of general forcing functions include the motion 
imparted by a cam to the follower; the vibration felt by an 
instrument when its package is dropped from a height; etc.

• The transient response of a system can be found by using what is 
known as the convolution integral.
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4.2
Response Under a General Periodic Force
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4.2 Response Under a General Periodic Force

• The equation of motion can be expressed as

• The steady-state solution of the equation is  derived as:
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation 

Find the total response of a viscously damped single degree of 
freedom system subjected to a harmonic base excitation for the 
following data:

m/s. 10    m, 02.0    m,  5sin05.0)(

N/m,4000    ,m/s-N20    ,kg10
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation 
Solution

The equation of motion of the system is given by:

The steady-state response of the system can be expressed as
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation 
Solution

We have, rad/s, 20
10

4000
 rad/s, 5 ,m 05.0 

m

k
Y n

937833.0))25.0)(05.0(2()25.01()2()1(

rad 02666.0
)25.0(1

)25.0)(05.0(2
tan

,200)05.0)(4000(  ,5)05.0)(5)(20(

rad/s 975.191

,05.0
)10)(4000(2

20

2
  ,25.0

20

5

222222

2
1

1

11

2























rr

kYbYca

km

c

c

c
r

nd

cn














© 2018 Mechanical Vibrations Sixth Edition in SI Units11

4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation 
Solution

The solution of the homogeneous equation is given by:

The total solution can be expressed as the superposition of xh(t) and 
xp(t) as:
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation 
Solution

Using Eqs.(E.4) and (E.5), we find
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4.2 Response Under a General Periodic Force

Example 4.5
Total Response Under Harmonic Base Excitation 
Solution

The solution of (E.6) and (E.7) yields X0=0.488695 and Φ0=1.529683 
rad.

Thus the total response of the mass under base excitation, in meters, 
is given by
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Response Under a Periodic Force of Irregular Form
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4.3 Response Under a Periodic Force of Irregular 
Form

• In some cases, the force acting on a system may be quite irregular 
and may be determined only experimentally. 

• The application of trapezoidal rule gives:
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4.3 Response Under a Periodic Force of Irregular 
Form

• An irregular forcing function:

• Once the Fourier coefficients a0, aj, and bj are known, the steady-
state response of the system can be found using Eq.(4.13) with











n

r

2



© 2018 Mechanical Vibrations Sixth Edition in SI Units17

4.3 Response Under a Periodic Force of Irregular 
Form

Example 4.6
Steady-State Vibration of a Hydraulic Valve

Find the steady-state response of the valve in the figure below if the 
pressure fluctuations in the chamber are found to be periodic. The 
valves of pressure measured at 0.01 second intervals in one cycle are 
given below.
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4.3 Response Under a Periodic Force of Irregular 
Form

Example 4.6
Steady-State Vibration of a Hydraulic Valve
Solution

Since the pressure fluctuations on the valve are periodic, the Fourier 
analysis of the given data of pressures in a cycle gives:

Other quantities needed for the computation are
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4.3 Response Under a Periodic Force of Irregular 
Form

Example 4.6
Steady-State Vibration of a Hydraulic Valve
Solution
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4.3 Response Under a Periodic Force of Irregular 
Form

Example 4.6
Steady-State Vibration of a Hydraulic Valve
Solution

The steady-state response of the valve can be expressed as
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4.4
Response Under a Nonperiodic Force
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4.4 Response Under a Nonperiodic Force

• When the exciting force F(t) is nonperiodic, such as that due to the 
blast from an explosion, a different method of calculating the 
response is required. 

• Various methods can be used to find the response of the system to 
an arbitrary excitation. 

• Some of these methods are as follows:
1. Representing the excitation by a Fourier integral
2. Using the method of convolution integral
3. Using the method of Laplace transforms
4. First approximating F(t) by a suitable interpolation model and 

then using a numerical procedure
5. Numerically integrating the equation of motion



4.5
Convolution Integral

© 2018 Mechanical Vibrations Sixth Edition in SI Units23



© 2018 Mechanical Vibrations Sixth Edition in SI Units24

4.5 Convolution Integral

• We have 

• By designating the magnitude of the impulse           by F, we can 
write, in general, 

• A unit impulse is defined as  

)12.4(Impulse 12 xmxmtF  

)13.4(
 tt

t FdtF

)14.4(1lim
0

 


FdtFdtf tt

tt

tF



© 2018 Mechanical Vibrations Sixth Edition in SI Units25

4.5 Convolution Integral

• Response to an impulse

For an underdamped system, the solution of the equation of motion

is given by
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4.5 Convolution Integral

• Response to an impulse

A single-degree-of-freedom system subjected to an impulse
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4.5 Convolution Integral

• Response to an impulse

If the mass is at rest before the unit impulse is applied, we obtain, 
from the impulse-momentum relation,

Thus the initial conditions are given by

Hence, Eq.(4.18) reduces to  
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4.5 Convolution Integral

• Response to an impulse

If the magnitude of the impulse is F instead of unity, the initial 
velocity      is           and the response of the system becomes

If the impulse is applied at an arbitrary time t =  , it will change the 
velocity at t =  , shown in Fig.4.4(a). Thus, 
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4.5 Convolution Integral

• Response to an impulse

Impulse Response
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4.5 Convolution Integral

Example 4.7
Response of a Structure Under Impact

In the vibration testing of a structure, an impact hammer with a load 
cell to measure the impact force is used to cause excitation, as shown 
in Fig.4.5(a). Assuming m = 5kg, k = 2000 N/m, c = 10 N-s/m and    
F = 20 N-s, find the response of the system.
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4.5 Convolution Integral

Example 4.7
Response of a Structure Under Impact
Solution

From the known data, 

Assuming that the impact is given at t = 0, the response of the system
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4.5 Convolution Integral

• Response to General Forcing Condition

Consider the response of the system under an arbitrary external 
force, the response is given by

)28.4(      )()()(   tgFtx

An arbitrary (nonperiodic) forcing function
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4.5 Convolution Integral

• Response to General Forcing Condition

The total response at time t can be found by summing all the 
responses due to the elementary impulses acting at all times   :

Letting              and replacing the summation by integration, we 
obtain
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4.5 Convolution Integral

• Response to Base Excitation

For an undamped system subjected to base excitation, the relative 
displacement can be as
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4.5 Convolution Integral

Example 4.12
Compacting Machine Under Linear Force

Determine the response of the compacting machine shown in Figure 
(a) when a linearly varying force (shown in Figure (b)) is applied due 
to the motion of the cam.
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4.5 Convolution Integral

Example 4.12
Compacting Machine Under Linear Force
Solution

Figure (b) is known as the ramp function. 
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4.5 Convolution Integral

Example 4.12
Compacting Machine Under Linear Force
Solution

These integrals can be evaluated and the response expressed as 
follows:

For an undamped system, Eq.(E.1) reduces to

Fig. 4.13(c) shows the response given by Eq.(E.2)
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4.6
Response Spectrum
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4.6 Response Spectrum

• The graph showing the variation of the maximum response 
(maximum displacement, velocity, acceleration, or any other 
quantity) with the natural frequency (or natural period) of a single 
degree of freedom system to a specified forcing function is known 
as the response spectrum. 

• Example 4.14 illustrates the construction of a response spectrum. 
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse

Find the undamped response spectrum for the sinusoidal pulse force 
shown in the figure using the initial conditions 
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse
Solution

The equation of motion of an undamped system can be expressed as
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse
Solution

Superimposing the homogeneous solution xc(t) and the particular 
solution xp(t),
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse
Solution

Using the initial conditions, the constants can be found:
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse
Solution

The solution can be expressed as a free vibration solution

where the constants can be found by:
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4.6 Response Spectrum

Example 4.14
Response Spectrum of a Sinusoidal Pulse
Solution

Where

Hence,

Therefore,
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4.6 Response Spectrum

• Response Spectrum for Base Excitation

For a harmonic oscillator (an undamped system under free 
vibration), we notice that 

Thus, the acceleration and displacement spectra can be obtained:
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4.6 Response Spectrum

• Response Spectrum for Base Excitation

The velocity response spectrum can be obtained:

Thus the pseudo response spectra are given by:
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4.6 Response Spectrum

• Earthquake Response Spectra

The most direct description of an earthquake motion in time 
domain is provided by accelerograms that are recorded by 
instruments called strong motion accelerographs. 

A typical accelerogram is shown in the figure below.



© 2018 Mechanical Vibrations Sixth Edition in SI Units49

4.6 Response Spectrum

• Earthquake Response Spectra

A response spectrum is used to provide the most descriptive 
representation of the influence of a given earthquake on a structure 
of machine. It is possible to plot the maximum response of a single 
degree freedom system using logarithmic scales.
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4.6 Response Spectrum

Example 4.17
Derailment of Trolley of a Crane During Earthquake

The trolley of an electric overhead traveling (EOT) crane travels 
horizontally on the girder as indicated in the figure. Assuming the 
trolley as a point mass, the crane can be modeled as a single degree 
of freedom system with a period 2 s and a damping ratio 2%. 
Determine whether the trolley derails under a vertical earthquake 
excitation.
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4.6 Response Spectrum

Example 4.17
Derailment of Trolley of a Crane During Earthquake
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4.6 Response Spectrum

Example 4.17
Derailment of Trolley of a Crane During Earthquake
Solution

For      = 2 s and ζ = 0.02, Fig.4.16 gives the spectral acceleration as 
Sa = 0.25 g and hence the trolley will not derail.

n
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4.6 Response Spectrum

• Design Under a Shock Environment

When a force is applied for short duration, usually for a period of 
less than one natural time period, it is called a shock load. 

A shock may be described by a pulse shock, velocity shock, or a 
shock response spectrum. The pulse shocks are introduced by 
applied forces or displacements in different forms.

A velocity shock is caused by sudden changes in the velocity. The 
shock response spectrum describes the way in which a machine or 
structure responds to a specific shock.
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4.6 Response Spectrum

• Design Under a Shock Environment

Typical shock pulses
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads

A printed circuit board (PCB) is mounted on a cantilevered aluminum 
bracket, as shown in Figure (a). The bracket is placed in a container 
that is expected to be dropped from a low-flying helicopter. The 
resulting shock can be approximated as a half-sine wave pulse, as 
shown in figure (b). Design the bracket to withstand an acceleration 
level of 100g under the half-sine wave pulse shown in figure (b). 
Assume a specific weight of 30 kN/m3, a Young’s modulus of 70 GPa, 
and a permissible stress of 180 MPa for aluminum.
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

The self-weight of the beam is given by

The total weight is

The area moment of inertia of the cross section of the beam is 

ddw 135)1030)(015.0)(3.0( 3 

2135 PCB of Weight  beam of Weight  dW

33 00125.0015.0
12

1
ddI 
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

The static deflection of the beam can be obtained

We adopt a trial and error procedure to determine the values of 
unknown.
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

Assuming d = 10 mm,

We have

Hence, 

m 10446.3
01.0

201.0135
)100286.1( 4

3
10  


st

s 03726.0
8.9

10466.3
22

4








g
st

n

6841.2
03726.0

1.00 
n

t





© 2018 Mechanical Vibrations Sixth Edition in SI Units60

4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

The dynamic load acting on the cantilever is given by:

The maximum bending stress at the root of the cantilever bracket can 
be computed as:
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

Since this stress exceeds the permissible value, we assume the next 
trial value of d as 20 mm. This yields: 
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4.6 Response Spectrum

Example 4.18
Design of a Bracket for Shock Loads
Solution

The dynamic load can be determined:

The maximum bending stress at the root of the bracket will be:

Since this stress is within the permissible limit, the thickness of the bracket 
can be taken as 20 mm.
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4.7 Laplace Transforms

• The Laplace transform of a function x(t) is defined as:

• The general solution can be expressed as
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Numerical Methods
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4.8 Numerical Methods

• The determination of the response of a system subjected to 
arbitrary forcing functions using numerical methods is called 
numerical simulation.

• Numerical simulations can be used to check the accuracy of 
analytical solutions, especially if the system is complex.

• Several methods are available for numerically integrating ordinary 
differential equations. 

• The Runge-Kutta methods are quite popular for the numerical 
solution of differential equations.



4.9
Response to Irregular Forcing Conditions Using Numerical 
Methods
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4.9 Response to Irregular Forcing Conditions Using 
Numerical Methods

• Let the function vary with time in an arbitrary manner. The 
response of the system can be found:
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4.9 Response to Irregular Forcing Conditions Using 
Numerical Methods

• Thus the response of the system at t = tj becomes
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4.9 Response to Irregular Forcing Conditions Using 
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods 

Find the response of a spring-mass-damper system subjected to the 
forcing function

in the interval               , using a numerical procedure.

Assume F0=1, k=1, m=1, ζ=0.1, and t0=τn/2, where τn denotes the 
natural period of vibration given by 
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4.9 Response to Irregular Forcing Conditions Using 
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods 
Solution

For the numerical computations, the time interval 0 to t0 is divided 
into 10 equal steps with

4 different methods are used to approximate the forcing function F(t). 
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4.9 Response to Irregular Forcing Conditions Using 
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods 
Solution

In the figure, F(t) is approximated by a series of rectangular impulses, 
each starting at the beginning of the corresponding time step.
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4.9 Response to Irregular Forcing Conditions Using 
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods 
Solution

In Fig. 4.36, piecewise linear (trapezoidal) impulses are used to 
approximate the forcing function F(t). The numerical results are given 
in Table 4.2. The results can be improved by using a higher-order 
polynomial for interpolation instead of the linear function.
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4.9 Response to Irregular Forcing Conditions Using 
Numerical Methods

Example 4.31
Damped Response Using Numerical Methods 
Solution


