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Part 1. Introduction

Procedure of Solving an Engineering
Vibration Problem (I)

Engineering problem statement

o Identify problems or performance index
Stress? Fatigue life? Vibration amplitude?
Bandwidth? Sensitivity?

Modeling engineering problems

o Engineering problem - engineering models >
vibration models

Analyzing vibration models
o Stiffness, natural frequency, ....
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Procedure of Solving an Engineering
Vibration Problem (II)

Solving vibration problems

o Mathematical techniques
ODE, Linear algebra, PDE, Fourier series
Finite element analysis

Interpretation and Prediction

o Convert mathematical results to engineering design
o Vibration solution - engineering solution
Experimental validation

o Verify and test the results

o Modify the design

Vibration Modeling of Engineering
Systems (I

Physical systems

o ldentify the key issue for the physical systems or
problems

o E.g. Extra noise; in sufficient bandwidth; fatigue
damage

convert the physical system to an

engineering model

o By neglecting unnecessary details

Reduce the engineering model to a vibration
model
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Vibration Modeling of Engineering
Systems (1I)

Vibration model is not unique

o Depends on what you want

o Simple / efficient vs. complicate / detail

Single degree of freedom (SDOF) model

o Simple, efficient, but lack of detail

Multiple degree of freedom (MDOF) model
o w/ technical detail but need mathematical effort
Continuous model

o More realistic physical details

o Much more complicate expression

Analyzing the Vibration Model

Obtaining equations of motion from vibration
models

Fundamental physical laws

o Newton’s 2nd law

o Hamilton’s principle

Analyzing techniques

o Free body diagrams

o Calculus of variation
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Solutions of the Vibration Model

To solve the equations of motion
o Equations of motion

o Appropriate boundary conditions

a Given initial conditions

Mathematical techniques

a Ordinary differential equations (ODE)
o Linear algebra

a Partial differential equations (PDE)

o Fourier analysis

Prediction Based on the Solution

Analytical solutions

o Provide performance correlations with design

parameters
Design optimization with constraints
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Experimental Validation

Vibration testing:
a To find problems
E.g., excessive noise, resonance
o To find necessary physical parameters
E.g., system damping, system spring constants
o To validate the analysis results
Modification of analysis model

Design Recommendation

Vibration analysis

o Provide strategies for solving engineering
problems with vibration concerns

o Provide solutions for improving performances of
engineering products

Vibration testing

o ldentify the sources of engineering problems

o Obtain model parameters for vibration analysis

o Validate vibration analysis results
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Part II. Mass-Spring System Modeling

SDOF Definitions

Assumptions

* Jumped mass

« stiffness proportional

to displacement L m J

* damping proportional to
velocity K 1
* linear time invariant

* 2nd order differential
equations
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'SDOF Systems

= Many engineering problems can be simplified
into SDOF models

a E.g., tall building; suspension systems

| Example of SDOF Systems

]

AN

(b) Spring-mass system
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‘ Importance of SDOF Model

F—x(n)—
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spring-mass system
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Elastic columns

(mass is negligible)

FIGURE 2.3 The space needle (structure).

(a) Building frame (b) Equivalent spring-

= Provide a simplest model to extract the basic idea v

| Importance of SDOF Model (Cont’d)

.§kli»

AN

(b) Spring-mass system

-

(a) (b}

FIGURE 2.10 Elevaled tank. (Photo courtesy of West Lafayette 'Water Company.)
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‘ Mathematical Modeling (I)

= Starting from Newton’s 2" law:
d*X(1) s
dfz = mx

F()=m

= By free-body diagram
—kx —mx=0 or mx+kx=0

e
= txi i

i I[— x —h-'——ﬁt e
k | T
—_——— ! I e
m m n R m
-: _J' : J kx —miX
TTemm oTEeT (reactive {inertia

force) force)

{a) Mass under a (b) Free-body diagram
displacement x

19

‘ Mathematical Modeling (II)

= Alternative standard form

.k .
¥+—x=0 or ¥+wx=0
m

\/?
®,=,—
m

x(t) = Ajcos wyt + A sinw,d

= Natural frequency

= Typical response

X(f=n}=."1.]=xu
.{'(E‘ = ﬂ} = n‘.l'.il"Az = .]::u

20
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 Mathematical Modeling (11I)

= Typical response

I__ slope = i,
x(¢) /
/ 2o
P

iy

velocity maximum

21
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| Spring Constants

TABLE1.3-1 Spring C for C: El

for Typical omm—

{ 1 FLH A = cross-sectional
Englneerlng Rod in torsion o
e k= GnD*
o 2L
Structures = P
Helical wire coil
S -
d = wire diameter
n = number of coil
Cantilever beam
w Ewh’
== . i.
L3 h = beam thickness

Doubly clamped beam

= E
Air spring
yPA?
k= v
A = diaphragm area
P,V = nominal pressure and volume
¥ = ratio of specific heats

23

| Calculating RMS

A =peak value

;
X = Iimijx(t)dt =average value
Too T )

.
X’ = Iimi.[xz(t)dt =mean - square value
T > T ) v\

X =~/X° =root mean square value

rms

24
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‘ The Decibel or dB scale

It is often useful to use a logarithmic scale to plot vibration levels (or noise
levels). One such scale is called the decibel or dB scale. The dB scale is

always relative to some reference value x,. It is define as:

For example: if an acceleration value was 19.6m/s?then relative to 1g (or
9.8m/s?) the level would be 6dB,

19.6

JOIogw( 08

2

0

X X
dBZIOIOQIO X_ :20|Og]0 X_

0

2
) = 20log,,(2)=6dB

25

| Comparison of Linear and dB plots

20
-40
60

Mag. (dB)

-80
-100

Case 2

-, . L

= = Controlon
— Control off ||

L —

20

40

80 100 120
Case 2

140

160 180 200

T
= = Controlon ||
—— Control off

80 100 120

L
140

L Il
160 180 200

E -
Frequency-(Hz)

26

2023/3/3

13



Part III. Energy Methods

27

Introduction

An alternative approach for modeling SDOF
systems

Can obtain approximate SDOF model for
engineering systems

o Assume shape

o Energy conservation

o Rayleigh or Rayleigh-Ritz methods

u Eventually, finite element method

28
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| Energy Approach for Exact Mass-
Spring Systems

. dr+uy=0
= Energy conservation dt
o T+V = constant T = imi?
U = -%kxz
ii mx +kx=0
. }714"7 _____ &x_—:—l—_- o
2%\; m ——--3 m :: m : - m  [E——- W = mg = kast
] J' :____J' kx —mi
T (reactive (inertia
force) foree) mx + kx == {]

29

| Insights: Rayleigh Method

= In a no-loss system, the mechanical energy is
conservative

o Maximum kinetic energy = Maximum potential
energy

hL+U=T+1
o Mainly used for calculating nL+0=0+1;
approximated natural frequency

o Need an reasonable assumed
mode shape

Tmax = UI'HHK

30
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2.5 Rayleigh’s Energy Method

I [ffect of Mass on w,, of a Spring
EXAMPLE 2.8

method to determine the natural frequency. Let [ be the total length of the spring. If x denotes the
displacement of the lower end of the spring (or mass m), the displacement at distance y from the
support is given by y(x/l). Similarly, if X denotes the velocity of the mass m, the velocity of a spring
element located at distance y from the support is given by y(x/). The kinetic energy of the spring

slement of length dy is
daT; = 1 —d b ’ (E1
T\ TN\ 4

where my is the mass of the spring. The total kinetic energy of the system can be expressed as

T = kinetic energy of mass (7},,) + kinetic energy of spring (7)

1 2:2

1 . 1({m yx

m = —mi? + S| Hay )| =
A 2™ /y:(,2<1 y>( lz>

1 ., 1mys .,
_1 e 1M E2
e (E2)

The total potential energy of the system is given by
U = 1kx? (E3)
By assuming a harmonic motion

x(t) = X cos wyt (E-4),

2.5 Rayleigh’s Energy Method

I [ffect of Mass on w,, of a Spring
EXAMPLE 2.8

where X is the maximum displacement of the mass and w,, is the natural frequency, the maximum
kinetic and potential energies can be expressed as

1
Tpax = -2-<m + %)X%ﬁ (ES)
1
Upax = Ekxz (E-6)

By equating T,x and Up,,y, We obtain the expression for the natural frequency:

k 12

Wy = ms E7)

+ s
mT

Thus the effect of the mass of the spring can be accounted for by adding one-third of its mass to the

main mass [2.3].

32
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‘ Part IV: Mass-Spring-Damper Systems

33

‘ Introduction

= Add damper for consideration
= Simplified damper (Linear damper)

= Can use Newton’s 2" |aw or Lagrange’s
equation for modeling

34
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Linear Viscous Dampers

Force is assumed to be proportional to the
relative velocity, i.e., .
=—CX

a This is true for viscous oil at low velocity

In practical, other important forms
a Aerodynamic drag .
F =—cx’

o Coulomb friction ]

F=-sgnx
Non of them can complete discribe damping
behavior

35

Mathematical Modeling

By free body diagram, the equation can be

obtained as - ‘
mx +cx+kx=0

+x
System Free-body diagram

36
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 Mathematical Modeling (II)

= Typical solution form o) = e J{xom A=

Xo + {wuxy /1 _ 52
. + —“N”T_—?m,. sinV'1 — & wn.r}
= Typical response

' Part V: Brief Capture of 274 Order
ODEs and Vibration Responses

= 2" order ODE plays important role in
vibration of SDOF system

38
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Generic Equation and Solution Forms

mx+cx+kx = F(t)
Can be use to describe the behavior of many
engineering systems
a Mechanical vibration
o Oscillatory circuits
o Hydraulic actuator,.. Etc
Understand the solution form is important for
further understanding the vibration insight

Analogous system

39

Lack of Damping Term (c=0)

x(1) = Ce* . \2 2
< A= (A1 + AP = I:Jﬁ% + (—0) :’ = amplitude
ms*+ k=0 w,
A X
12 =y 22 ] = -1 0 =
e _k = tiw, ¢ an (A1> tan (xown) phase angle
m
- k - x(t) = Acos (w,t — ¢)
" m
. _ Ay = Apsindy
x(f) = G + Coe™ Ay = Ajcos ¢y

x(f) = Ajcoswyt + A, sin wyt _
x(t) = Agsin (w,t + )

xt=0)= A, = xg
i(f = U) = wnAz = );’0

% )"70 2 |12
)‘;U ) Ag = A= Xg + | —
x(f) = xpcos w,t + —sin w,t @y,
wy
A; = Acos¢ X
¢y = tan! Lﬁ
Ay = Asin g Xo 40
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Response

To solve SDOF vibration

problem, one needs to provide

two initial conditions

a Initial position s

a Initial velocity oy
| '\ /\ ..rl:Jl»&'i‘._\ maximum

Problem can be solved by i \/ \/
either A N e

o Analytical or

o Runge-Kutta (for complicated
nonlinear ODE or MDOF ODEs)

41

With Damping Term
mi +cx+ kx =0
x(f) = Ce*
ms*+cs+ k=0

—c+ V- dmk ci\/Ec)z_k

S = -— —— —
b 2m 2m 2m

xi(f) = Cie® and  xy(f) = Coe™

Over damped situation (c?>4mk)
Critical damped situation (c?=4mk)
Under damped situation (c?<4mk)

42
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Damping Ratio

Critical damping
coefficient c,

o The damping coefficient
for resulting fastest settling

Ik
. =2m E=2\/km=2mwn

Damping ratio ¢ ¢ = clc.

o The ratio between c ¢ C
damping coefficient and c, om ¢, 2m Ewop

Solutions

Over damped solution

x(f) = Cie™ + Cpe™
= Cel-EVEF-2) + gl Ve 2

Under damped solution
x(@) = eg“’“‘{xg cos V1 — P wyt

iD + é’wnx() .

+ 2220 inV1 - 22 mnt}
" . — 72

Critical damped solution VL=

x(t) = [xo + (Xp + wxo)t]e” "

44
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i’ossibﬂity 1. Critically damped motion

Critical damping occurs when £=1. The damping coefficient c in this case
is given by:

{=1=>c=c, =2~km =2mo,
%K—J
. . definition of critical
Solving for A then gives, damping coefficient

. A repeated, real root
The solution then takes the form

x(t)=ae " +a,te™™

Needs two independent solutions, hence the ¢t
in the second term

45

" Critically damped motion
a, and a,can be calculated from initial conditions (t=0),

x=(a, +a,t)e "
k=225N/m m=100kg ang=1

= a, =X, 0.6
— x0=0.4mm v0=1mm/s
-— x0=0.4mm v0=0mm/s

v=(-wa -owat+a,)e "

E 0.4 . x0=0.4mm v0=-1mm/s
V) =-0,8, +a, = Lk
S 0.3
— e “
—a,=V,+0,X, R
g o
g2
Aa 01f
0F e i
-0.1
0 1 2 3 4
Time (sec)

46
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| Possibility 2: Overdamped motion

An overdamped case occurs when {>1. Both of the roots of the equation are
again real.
k=225N/m m=100kg and(=2
0.6 ‘ :

0.5

—_— X=0.4mm v,=1mm/s
- x0=0.4mm v0=0mm/s

T 04 v Xp=0.4mm vy=-1mm/s | |
E
a, and a,can again be calculated from 5 0315
initial conditions (t=0), g
g 0.2f
o Vaa, ~
@ '-..__.. -~ .
a 0.1 ‘

:_V0+(_C+ V¢ —Do,x,
20\ -1 _'°’ /

1
*To 1 2 3
. Vo + (§+ \ élz - 1) w, X, / Time (sec)

“ 20 P =1 Siower o respond than sitically

damped case

47

Possibility 3: Underdamped motion

An underdamped case occurs when (<1. The roots of the equation
are complex conjugate pairs. This is the most common case and the
only one that yields oscillation.

. 2
,2:_§a)nia)nj l_g
. ' 2 . ' 2
x(t) — e_gwnt(ale]wnt l_g + aze_]wnt 1_§ )

= Ae "' sin(wt + @)

The frequency of oscillation o, is called the damped natural frequency
is given by.

48
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. Underdamped motion

A and ¢ can be calculated from initial conditions (t=0),

* Gives an oscillating response
with exponential decay

* Most natural systems vibrate
with and underdamped
response

* See Window 1.5 for details and

Displacement

other representations

Time (sec)
49

 Under Damped Response

w,=w,J1-¢* damped natural frequency

" il
X \“-.ﬂ____‘ Xetont
X / x Sl SRR I
1, | 1‘, X /—-------\\-m//—--.R gt
Ol 5 I N ., S
| ¢0| __.-—V.
) R
"7 Eq.@7)

50
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Phase Diagram: Damped System

@ 2007, Danial A. Russall

=

51

Imaginary axis

=0
bamped Responses - R
E 51
AT
5 s %\ 0 Real axis
for { > 1\for¢ > 1 3 ~ {0
: ¥2
x()
=0
Overdamped (¢ > 1) Undamped (£ = 0)
Critically Underdamped ({ <1)
~._ damped ({=1) (wyis smaller
i o~ thanw,)
lan“';&o B
o t
52
n
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 Coulomb (Friction) Damping

—kx + uN = mx or

. uN
x(t) = Azcosw,t + Aysinw,t + —

mx + kx = pN

k

mx + pm gsgn(x) + kx =0

53

' Part VI: Simple Examples

54
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 Problem 1: Harmonic Response of

Water Tank ®ao2.1)
|/‘_ \, ! Y
w ] \/\’ : Ll
After p. 26 ‘ ,
AR

{b)

FIGURE 2.10  Elevated tank. (Photo courtesy of West Lafayette Water Company.)

The column of the water tank shown in Fig. 2.10(a) is 90 m high and is made of reinforced concrete
with a tubular cross section of inner diameter 2.4 m and outer diameter 3 m. The tank has a mass of —
3 X 10° kg with water. By neglecting the mass of the column and assuming the Young’s modulus of .

reinforced concrete as 30 GPa, determine the following:

Problem 2: Effect of Beam Mass on
Natural Frequency of Water Tank ®ao29)

L

{—— !
< x | lP

~~~~~~~~ X&) i

i Ymax = 3ET

Find the natural frequency of transverse vibration of the water tank considered in Example 2.1 and

Fig. 2.10 by including the mass of the column.

After p32
56
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| Problem 3: Response of Anvil of
Forging Hammer ®ao 2.10)

NN

After p52

(a)
FIGURE 2.30  Forging hammer.

The anvil of a forging hammer weighs 5,000 N and is mounted on a foundation that has a stiffness
of 5 % 10° N/m and a viscous damping constant of 10,000 N-s/m. During a particular forging opet-
ation, the tup (i.e., the falling weight or the hammer) weighing 1,000 N, is made to fall from a height
of 2 m on to the anvil (Fig. 2.30a). If the anvil is at rest before impact by the tup, determine the
response of the anvil after the impact. Assume that the coefficient of restitution between the anvil
and the tup is 0.4. >

P{roblem 4. Shock Absotber of a
Motorcycle ®ao2.11

After p52

(a) (b)
FIGURE 2.31  Shock absorber of a motorcycle.

An underdamped shock absorber is to be designed for a motorcycle of mass 200 kg (Fig. 2.31a).
When the shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting
displacement-time curve is to be as indicated in Fig. 2.31(b). Find the necessary stiffness and damp-
ing constants of the shock absorber if the damped period of vibration is to be 2 s and the amplitude
x; is to be reduced to one-fourth in one half cycle (i.e., x; 5 = x1/4). Also find the minimumssinitial
velocity that leads to a maximum displacement of 250 mm.
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‘ Part VII: Case Studies

59

PSR X Position

Sensor

= Sample Holder

Y Position
Sensors
- -

= 3 DoF precision stage for precision metrology

' X actuator

60
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‘ Modeling

Stage Top Plate ] J EM Actuator
> éé
B I
F
Leg/Flexure
L—Lﬁla_qg_@mﬂ%d
| Base Plate \}lsmus Layer ]

Fig. 4. Schematic plot of stage motion.
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