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Outline
 Introduction

 Mass-spring system modeling

 Energy method

 Mass-spring-damper systems

 2nd order ODE: a brief catch up

 Responses

 Simple examples

 Case studies
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Part 1. Introduction
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Procedure of Solving an Engineering 
Vibration Problem (I)
 Engineering problem statement

 Identify problems or performance index
 Stress? Fatigue life? Vibration amplitude?

 Bandwidth? Sensitivity? 

 Modeling engineering problems
 Engineering problem  engineering models 

vibration models

 Analyzing vibration models
 Stiffness, natural frequency, ….
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Procedure of Solving an Engineering 
Vibration Problem (II)
 Solving vibration problems
 Mathematical techniques

 ODE, Linear algebra, PDE, Fourier series
 Finite element analysis

 Interpretation and Prediction
 Convert mathematical results to engineering design
 Vibration solution  engineering solution

 Experimental validation
 Verify and test the results
 Modify the design
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Vibration Modeling of Engineering 
Systems (I)
 Physical systems

 Identify the key issue for the physical systems or 
problems

 E.g.  Extra noise; in sufficient bandwidth; fatigue 
damage

 convert the physical system to an 
engineering model
 By neglecting unnecessary details

 Reduce the engineering model to a vibration 
model 
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Vibration Modeling of Engineering 
Systems (II)
 Vibration model is not unique
 Depends on what you want
 Simple / efficient vs. complicate / detail

 Single degree of freedom (SDOF) model
 Simple, efficient, but lack of detail

 Multiple degree of freedom (MDOF) model
 w/ technical detail but need mathematical effort

 Continuous model
 More realistic physical details
 Much more complicate expression
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Analyzing the Vibration Model

 Obtaining equations of motion from vibration 
models

 Fundamental physical laws
 Newton’s 2nd law

 Hamilton’s principle

 Analyzing techniques
 Free body diagrams

 Calculus of variation
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Solutions of the Vibration Model

 To solve the equations of motion
 Equations of motion

 Appropriate boundary conditions

 Given initial conditions

 Mathematical techniques
 Ordinary differential equations (ODE)

 Linear algebra

 Partial differential equations (PDE)

 Fourier analysis
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Prediction Based on the Solution

 Analytical solutions
 Provide performance correlations with design 

parameters

 Design optimization with constraints 
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Experimental Validation

 Vibration testing:
 To find problems

 E.g., excessive noise, resonance

 To find necessary physical parameters
 E.g., system damping, system spring constants

 To validate the analysis results
 Modification of analysis model
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Design Recommendation

 Vibration analysis
 Provide strategies for solving engineering 

problems with vibration concerns

 Provide solutions for improving performances of 
engineering products

 Vibration testing
 Identify the sources of engineering problems

 Obtain model parameters for vibration analysis

 Validate vibration analysis results
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Part II. Mass-Spring System Modeling
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SDOF Definitions
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SDOF Systems

 Many engineering problems can be simplified 
into SDOF models
 E.g., tall building;  suspension systems
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Example of SDOF Systems
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Importance of SDOF Model

 Provide a simplest model to extract the basic idea 17

Importance of SDOF Model (Cont’d)
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Mathematical Modeling (I)
 Starting from Newton’s 2nd law:

 By free-body diagram
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Mathematical Modeling (II)

 Alternative standard form

 Natural frequency

 Typical response
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Mathematical Modeling (III)

 Typical response
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Phase Diagram: Undamp System
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Spring Constants 
for Typical 
Engineering 
Structures
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Calculating RMS

value square mean root = 

value square-mean = 

 value average = 

value peak 
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The Decibel or dB scale

It is often useful to use a logarithmic scale to plot vibration levels (or noise 
levels). One such scale is called the decibel or dB scale. The dB scale is 
always relative to some reference value x0. It is define as:
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Comparison of Linear and dB plots
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Part III. Energy Methods
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Introduction

 An alternative approach for modeling SDOF 
systems

 Can obtain approximate SDOF model for 
engineering systems
 Assume shape

 Energy conservation

 Rayleigh or Rayleigh-Ritz methods

 Eventually, finite element method
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Energy Approach for Exact Mass-
Spring Systems

 Energy conservation
 T+V = constant
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Insights: Rayleigh Method

 In a no-loss system, the mechanical energy is 
conservative
 Maximum kinetic energy = Maximum potential 

energy

 Mainly used for calculating                  
approximated natural frequency

 Need an reasonable assumed                         
mode shape
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Part IV: Mass-Spring-Damper Systems

33

Introduction

 Add damper for consideration

 Simplified damper (Linear damper)

 Can use Newton’s 2nd law or Lagrange’s 
equation for modeling

34
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Linear Viscous Dampers
 Force is assumed to be proportional to the 

relative velocity, i.e., 

 This is true for viscous oil at low velocity

 In practical, other important forms
 Aerodynamic drag

 Coulomb friction

 Non of them can complete discribe damping 
behavior

F cx  

2F cx  

sgnF x  
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Mathematical Modeling

 By free body diagram, the equation can be 
obtained as
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Mathematical Modeling (II)

 Typical solution form

 Typical response
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Part V: Brief Capture of 2nd Order 
ODEs and Vibration Responses
 2nd order ODE plays important role in 

vibration of SDOF system
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Generic Equation and Solution Forms
( )mx cx kx F t   

 Can be use to describe the behavior of many 
engineering systems
 Mechanical vibration

 Oscillatory circuits

 Hydraulic actuator,.. Etc

 Understand the solution form is important for 
further understanding the vibration insight

 Analogous system 

39

Lack of Damping Term (c=0)
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Response
 To solve SDOF vibration 

problem, one needs to provide 
two initial conditions
 Initial position

 Initial velocity

 Problem can be solved by 
either
 Analytical or

 Runge-Kutta (for complicated 
nonlinear ODE or MDOF ODEs)
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With Damping Term

 Over damped situation (c2>4mk)

 Critical damped situation (c2=4mk)

 Under damped situation (c2<4mk)
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Damping Ratio

 Critical damping 
coefficient cc

 The damping coefficient 
for resulting fastest settling

 Damping ratio 
 The ratio between 

damping coefficient and cc
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Solutions

 Over damped solution

 Under damped solution

 Critical damped solution
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Possibility 1. Critically damped motion

Critical damping occurs when =1. The damping coefficient c in this case 
is given by:



 =1 c  ccr  2 km
definition of critical
damping coefficient

    2mn

The solution then takes the form

tt nn teaeatx    21)(

Solving for l then gives,

A repeated, real root

Needs two independent solutions, hence the t
in the second term
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Critically damped motion
a1 and a2 can be calculated from initial conditions (t=0),
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Possibility 2: Overdamped motion
An overdamped case occurs when >1. Both of the roots of the equation are 
again real.

a1 and a2 can again be calculated from 
initial conditions (t=0),

a1  v0  (   2 1)nx0

2n  2 1

      a2 
v0  (   2 1)nx0

2n  2 1
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Slower to respond than critically 
damped case
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Possibility 3: Underdamped motion

An underdamped case occurs when <1. The roots of the equation 
are complex conjugate pairs.  This is the most common case and the 
only one that yields oscillation.

l1,2  n n j 1 2

x(t)  en t(a1e
jn t 1 2

 a2e
 jnt 1 2

)

       Aen t sin(dt )

The frequency of oscillation d is called the damped natural frequency
is given by.
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Underdamped motion
A and  can be calculated from initial conditions (t=0),
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• Gives an oscillating response 
with exponential decay

• Most natural systems vibrate 
with and underdamped 
response

• See Window 1.5 for details and 

other representations

Under Damped Response

21     damped natural frequencyd n   
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Phase Diagram: Damped System
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Damped Responses
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Coulomb (Friction) Damping
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Part VI: Simple Examples

54



2023/3/3

28

Problem 1: Harmonic Response of 
Water Tank (Rao 2.1)
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After p. 26

Problem 2: Effect of Beam Mass on 
Natural Frequency of Water Tank (Rao 2.9)
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After p32
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Problem 3: Response of Anvil of 
Forging Hammer (Rao 2.10)
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After p52

Problem 4. Shock Absorber of a 
Motorcycle (Rao 2.11)
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After p52
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Part VII: Case Studies 
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Case I: Precision Stage Modeling (MIT)

 3 DoF precision stage for precision metrology
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Modeling

61


