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MDOF Equations of Motion

Equation of Motion for 2 DOF

can be written in compact matrix form as

( )

( )







=















−

−+
+
















−

−+
+

















)t(f
)t(f

x
x

kk
kkk

x
x

cc
ccc

x
x

m
m

2

1

2

1

22

221

2

1

22

221

2

1

2

1

&

&

&&

&&

[ ]{ } [ ]{ } [ ]{ } { }FxKxCxM =++ &&&



3 Dr. Peter Avitabile
Modal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 6

MDOF Equations of Motion

This coupled set of equations can be uncoupled by
performing an eigensolution to obtain ‘eigenpairs’
for each mode of the system, that is

‘eigenvalues’ and ‘eigenvectors’

or

‘frequencies’ (poles) and ‘mode shapes’
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MDOF Equations of Motion

Equation of Motion
[ ]{ } [ ]{ } [ ]{ } { })t(FxKxCxM =++ &&&

Eigensolution

Frequencies (eigenvalues) and
Mode Shapes (eigenvectors)
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MDOF - Orthogonality of Eigenvectors

Normal modes are ‘orthogonal’ with respect to the
system mass and stiffness matrices.
The eigen problem can be written as

For the ith mode of the system, the eigenproblem
can be written as

[ ][ ] [ ][ ][ ]2UMUK Ω=

[ ]{ } [ ]{ }iii uMuK λ= (6.6.1)
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MDOF - Orthogonality of Eigenvectors

Premultiply that equation by the transpose of a
different vector uj

and write a second equation for uj and premultiply
it by the transpose of vector ui

(6.6.2)

(6.6.3)
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MDOF - Orthogonality of Eigenvectors

Subtracting 6.6.3 from 6.6.2, yields

Since the eigenvalues for each mode are different,

When i=j, then the values are not zero

(6.6.2)

(6.6.8)
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Modal Matrix and Modal Space Transformation

Define the modal matrix as the collection of
modal vectors for each mode organized in
column fashion in the modal matrix

This modal matrix is then used to define the
modal transformation equation with a new
coordinate with ‘p’ as the principal coordinate
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Modal Space Transformation

Substitute the modal transformation into the
equation of motion

In order to put the equations in normal form, this
equation must be premultiplied by the transpose of
the projection operator to give
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Modal Space Transformation

The first term of the modal acceleration can
be expanded as
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Modal Space Transformation

Recall from orthogonality that

{ } [ ]{ } ji0uMu j
T

i ≠=

so that

[ ] [ ][ ]

{ } [ ]{ }( )
{ } [ ]{ }( )

{ } [ ]{ }( )


















=

OMMM

L

L

L

3
T

3

2
T

2

1
T

1

T

uMu00
0uMu0
00uMu

UMU



12 Dr. Peter Avitabile
Modal Analysis & Controls Laboratory22.457 Mechanical Vibrations - Chapter 6

Modal Mass, Modal Damping, Modal Stiffness

The mass becomes

The stiffness becomes

The damping becomes
(under special conditions)
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Modal Space Transformation

The physical set of highly coupled equations are
transformed to modal space through the modal
transformation equation to yield a set of uncoupled
equations

Modal equations (uncoupled)
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Modal Space Transformation

Diagonal Matrices -
   Modal Mass       Modal Damping    Modal Stiffness

                       Highly coupled system

transformed into
simple system
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Modal Space Transformation

It is very clear to see that these modal space
equations result in a set of independent SDOF
systems
The modal transformation equation uncouples the
highly coupled set of equations
The modal transformation appropriates the force
to each modal oscillator in modal space
The modal transformation equation combines the
response of all the independent SDOF systems to
identify the total physical response
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Modal Space Response Analysis

Since the MDOF system is reduced to equivalent
SDOF systems with appropriate force, the
response of each SDOF system can be determined
using SDOF approaches discussed thus far.
The total response due to each of the SDOF
systems can be determined using the modal
transformation equation
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Modal Space Transformation
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Modal Space - Modal Matrices
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Proportional Damping
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The damping matrix is only uncoupled for a special
case where the damping is assumed to be
proportional to the mass and/or stiffness matrices

Many times proportional damping is assumed since
we do not know what the actual damping is
This assumption began back when computational
power was limited and matrix size was of critical
concern.  But even today we still struggle with the
damping matrix !!!
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Non-Proportional Damping

If the damping is not proportional then a state
space solution is required (beyond our scope here)
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The equation of motion can be recast as

The eigensolution and modal transformation is then
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MATLAB Examples - VTB4_1

VIBRATION TOOLBOX EXAMPLE 4_1

>> clear
>> m=[1 0;0 1];k=[2 -1;-1 1];
>> [P,w,U]=VTB4_1(m,k)

P =
0.5257    0.8507

    0.8507   -0.5257
w =

0.6180
    1.6180
U =

0.5257    0.8507
    0.8507   -0.5257
>> m
m =

1     0
     0     1
>> k
k =

2    -1
   -1     1

>>
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MATLAB Examples - VTB4_3
VIBRATION TOOLBOX EXAMPLE 4_3

>> clear
>> m=[1 0;0 1];d=[.1 0;0 .1];k=[2 -1;-1 1];
>> [v,w,zeta]=VTB4_3(m,d,k)
Damping is proportional, eigenvectors are real.

v =
   -0.5257   -0.8507
   -0.8507    0.5257
w =
    0.6180
    1.6180
zeta =
    0.0809
    0.0309
>> m
m =
     1     0
     0     1
>> d
d =
    0.1000         0
         0    0.1000
>> k
k =

     2    -1
    -1     1


