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ANALYTICAL MECHANICS:
BAsic CONCEPTS

1 INTRODUCTION

%ss chapter and Chapter S introduce analytical techniques for describing the motion
o &ynamical systems. The dynamical system is considered as a whole and scalar
ities such as energy and work are used. Constraint forces and moments are
=d differently than in Newtonian mechanics. Constraint forces that do no work
pot appear in the formulation, and they are accounted for by appropriately se-
sung the variables used to describe the motion. Sometimes, one may need to find
wt the magnitudes of the constraint forces. This can be accomplished by calculating
magnitudes of the constraint forces after the problem is solved, or by leaving
constraints in the system formulation by means of Lagrange multipliers. The
seroaches described in this chapter are analytical approaches and they are based
the principles of variational calculus. Appendix B provides a more detailed look
¢ wariational principles. Generalized coordinates, which do not necessarily have to
& physical coordinates, are used as motion variables. This makes the analytical ap-
sh more flexible than the Newtonian, as the Newtonian approach is implemented
sme physical coordinates.
We derive the analytical equations of motion in this chapter for particles
for plane motion of rigid bodies, though these equations are valid for three-
-nsional rigid body motion and deformable bodies as well. Chapter 8 will
s with D’ Alembert’s principle and Lagrange’s equations for the general three-
=nsional motion of rigid bodies.
One question often asked is whether it is more convenient to use a Newtonian
Smigue or an analytical one when obtaining the equations of motion. There is no set
_ to this question, with the possible exception of dynamical systems consisting
" w=veral interconnected components. When the number of coordinates needed to
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describe the system is much less than the number of components, it is usually prefes
able to use analytical techniques. When amplitudes of reaction forces are sought &
is usually better to use a Newtonian analysis. Looking at the problem from both ¢
Newtonian and analytical points of view gives one more insight and a better undss
standing.

Analytical techniques use scalar functions like work and energy 1n the fors
lation, rather than vector quantities. While this approach makes a lot of sense. &
experiences of dynamicists in recent years have shown that vector approaches ce
bined with analytical techniques are more desirable when modeling complex

tems. One advantage of a vector approach is that it can be implemented on a digi
computer more readily.

4.2 GENERALIZED COORDINATES

A system of N particles requires 3N physical coordinates to specify the system’s pe=
sition. Consider an inertial coordinate system and let the vector r; = ry(x;, v;, ;)
the mapping of the ith particle in this coordinate system.! We express r; as (Fig. 4.1

ri = xi+yj+ zik i=12....,.N [4.2.

The 3N coordinates required to represent the system span a 3N-dimensional space
which is called the configuration space of dimension n = 3N. In many cases.
we will soon see, it is more advantageous to use a different set of variables than the
physical coordinates to describe the motion. This approach is analogous to that
using different coordinate systems that we saw in Chapter 1. We introduce a set
variables gy, g, ..., g,, related to the physical coordinates by

X1 = x1(q1, 92, - - ., qn)
Y1 = y1(q1. 42, ..., qn)
21 = Z1(Q1: G2 v v5:Gp)
X2 = X5(G1s G2 +.+.++ Gn)

in = Z2n(Q1,q2 - ... qn) [4.3

We will refer to a set of variables that can completely describe the position &
a dynamical system as generalized coordinates. The space spanned by the genera-
ized coordinates is the configuration space. As an illustration, consider the spherical
pendulum in Fig. 4.2, whose length can change. The motion of the pendulum can
described by the Cartesian coordinates x, y, and z, or by ¢, g2, and g3, where ¢ =
describes the length of the pendulum, and ¢, = 6 and g3y = ¢ describe the anguk

'IF @ noninertial coordinate system is used, one has to include the variables describing the motion of the referans

frame in the set of coordinates that describe the: motion, unless the characteristics of the reference frame are trec
as known.
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4.1 A system of N particles Figure 4.2 A spherical pendulum
whose length changes

isnlacement. The choice of L, 8, and ¢ as generalized coordinates 1s equivalent to
e spherical coordinates. The two sets of coordinates are related by

x = gqicosqgysingy = Lcosfsing y = g;sing; sings = Lsinfsing
z= —qicosgz; = —Lcosd [4.2.3]

If the length of the pendulum is constant, g; = L = constant, we do not need
» @se it as a variable; g» = 0 and g3 = ¢ are sufficient. If we use the coordinates
+. and z to describe the motion, we have to relate them employing the constraint

224y 4+ # = L? = constant [4.2.4]

“smstraint relations, such as the one in this equation, indicate that the generalized
swerdinates are related to each other, and that the system can be analyzed by a smaller
of coordinates. The double link in Fig. 4.3, where the lengths of the rods are
stant, requires at least two generalized coordinates to describe the configuration
¢ the two rods. One can conveniently select them as the angles 6 and 6;.

Figure 4.3 A double link
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We hence need to distinguish between sets of generalized coordinates whes
each coordinate is independent of the others and where these variables are not Ings
pendent.? In general, if a system of N particles has m constraint equations acting ¢
it. we can describe the system uniquely by p independent generalized coordinase
g, (k = 1,2,..., p), where

p=3N—-m=n—m L4.

in which p is called the number of degrees of freedom of the system. The term &=
gree of freedom can be defined as the minimum number of independent coordinaie
necessary to describe a system uniquely. Sets of generalized coordinates where ea
coordinate is not independent of the others are called constrained generalized coow
dinates or dependent generalized coordinates. The number of degrees of frecdom
a characteristic of the dynamical system and is independent of the coordinates uss
to describe the motion. While one can select the number and types of generalizss
coordinates and associated constraints in more than one way, p = n—m s invari

The rate of change of a generalized coordinate with respect to time 18 called®
generalized velocity and is denoted by g(7) (k = 1,2, ..., n). The 2n-dimensio
space spanned by the generalized coordinates and generalized velocities is called
state space.

For the pendulum in Fig. 4.2 we generated two sets of generalized coordinase
We could select other sets of generalized coordinates as well. For example, we ¢
select the generalized coordinates as L, ¢, and x. However, this would introduce soms
ambiguity into the description of the pendulum, as x has the same value when &%
angle 0 is positive or negative. Such coordinates are known as ambiguous gene
ized coordinates. Another example of ambiguous generalized coordinates would
to use the coordinates xp and yp of the endpoint P of the double link in Fig. 4.3. C
can easily show that a given coordinate of the endpoint can be reached by two &
ferent configurations of the links, the two being mirror images about the line joins
points O and P, as shown in Fig. 4.4.

First configuration

F
L/é,, iy Second configuration

Figure 4.4

2| this regard, the definition of generalized coordinate here is slight different than the traditional defin
older texts, which often resirict the term’s meaning to only an independent set.
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We draw two conclusions from the above. First, the generalized coordinates,
=ther they are independent or not, do not constitute a unique set. This actually is a
smendous advantage, as it gives a lot of flexibility. Second, one must exercise care
sen selecting generalized coordinates, especially independent generalized coordi-
= 10 avoid redundancies and ambiguities. A poor choice of generalized coordi-
= can make the problem formulation and solution unnecessarily difficult.
The discussion here with regards to generalized coordinates 1s similar to the
=is of coordinate systems in Chapter 1. When we go from Cartesian to cylin-
meal or spherical coordinates, all we are doing is going from one set of generalized
finates to another. We choose the coordinate system so that it simplifies the for-
01 .

CONSTRAINTS

s section we analyze constraints that act on dynamical systems. We describe
¢ constraints in terms of physical as well as generalized coordinates. The interest
i smmarily in equality constraints.

In dynamical systems, constraints are usually encountered as a result of contact
sween two (or more) bodies. Constraints restrict the motion of the bodies on which
@ act. Associated with a constraint are a constraint equation and a constraint
"+ The constraint equation describes the geometry and/or kinematics of the con-
The constraint force is the contact force, also called the reaction. (Constraint
aons can also be written when the motion is viewed from a moving reference
and there is no contact. The relative motion equation becomes the constraint
o 10 }

Consider Fig. 4.5 and a particle moving on a smooth surface whose shape is
SCT1DE d b}’

flx,y,z,8) =0 [4.3.1]

w= [ has continuous second derivatives in all its variables. The motion of the par-
over the surface can be viewed as the motion of an otherwise free particle sub-
=4 to the constraint of moving on that particular surface. Hence, f(x, y, 2, 1) =
oresents a constraint equation. The constraint equation [4.3.1] is referred to
configuration constraint. For a system described in terms of n generalized

i fle,y,z2,0=0

/
A

Figure 4.5 A particle moving on a smooth surface
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coordinates, we can express a configuration constraint as

f(':i"t?qzl"'-qu}=0 [‘n

The differential of the constraint f (in terms of physical and generalized coordi
1S

af f af af _
df = ﬁxdr + —dy + zd 74 Y dt =0 [4.3.
i | df f?f é’f
d ——dg; + —d + = df=0 4.3.
g dq) L dq; i 3-‘-?;: [

The expressions [4.3.3] are said to be constraint relations in Pfaffian form.
constraint in Pfaffian form is one that is expressed in the form of differentials.) D&
viding these equations by dt, we write the constraint equations in velocity form (s
called velocity constraints or motion constraints) as

af _df . df . . df
= = Ly gy L L = 4.3
dt ax" dy dz dt [
e f df
f-}' 1t
d I (?Ij'{

I 4w F + = = 4.3
L?Q'ng ﬂq”qn dt L

The general form of a velocity constraint can be written in terms of physical coond
nates as

and, in terms of a system with n generalized coordinates subjected to m constrairs

f
Zﬂjklﬂj‘k"‘lﬂjﬂ:ﬂ j=12 ... m [4.3
k=1
where a,, ay, a;, ap,and ajpandajg (j = 1L2,...,m; k = 1,2,..., n) are functic
of the generalized coordinates and time, for example, a;; = a (g1 G2 o o G BB

Note that once the constraints are imposed to a set of independent generalized cos
dinates, these coordinates are no longer independent.
A constraint that can be expressed as both a configuration constraint as well
in velocity form is called holonomic. Constraints that do not have this property =
called nonholonomic. In other words, nonholonomic constraints cannot be expresse
as configuration constraints.

4.3.1 HoLONOMIC CONSTRAINTS

An unconstrained dynamical system or one subjected to a holonomic constraint
18 not an explicit function of time, for example, filgr, gz . ... gqn) = 0, is called
scleronomic system. It the holonomic constraint is an explicit function of time, &
system is called rheonomic. Throughout this text we will deal mostly with scless
nomic systems, as they constitute the majority of situations encountered in enginess
ing applications.
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Consider the single particle discussed above and the case when the holonomic
constraint f is not an explicit function of time. That 1s, the plane defined by the
constraint is fixed. Elimination of the df/dt term from Eq. [4.3.4a] yields
af _af . af L .,

e = et —}-I-&?

4.3.7
at adx ! !

Denote the position and velocity of the particle by r(r) = x(1)i + v(1)j + z(Hk
and v(1) = r(t) = x(1)i + v(1)j + z(1)k. The gradient of the constraint is

, o
Vf = E{-l + —J - ﬂ_i [4.3.8]

Taking the dot product between the gradient of the constraint and velocity v(f)
Zves

oA f .
Wfev=—% + y+ o [4.3.9]
which, when compared with Eq. [4.3.4a], yie]ds
df
v L ] — —_— — - -
fewai [4.3.10]

with the expected result that the particle velocity is always tangent to the surface.”
same relation can be derived for generalized coordinates.

Given the holonomic constraint of a particle moving on a surface, the question
=n arises as to what keeps the particle on the surface. The answer 1s a constraint
ce normal to the surface, as shown in Fig. 4.6. To every constraint relation corre-
ds a constraint force. Considering a single particle and denoting the constraint
Seece by F/, one can express it as

F'= F'n [4.3.11]

>re N is a unit vector representing the direction perpendicular to the surface, usu-
referred to as the normal direction. (This direction is similar to the normal direc-
in normal-tangential coordinates, but here it can be taken as in either direction
srpendicular to the surface.) Since F' is perpendicular to the surface, 1t must be per-
sadicular to the velocity. It follows from Eq. [4.3.9] that the unit vector n. which 18

Fl
t Figure 4.6 Constraint force for a helenomic constraint

" B=call the derivation in Chapter 1 when analyzing path variables that the particle velocity is always tangent to
*= oath.
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normal to the surface, should be parallel to Vf. One can define n as

of . of. of
“Vf ar T o T 5k

n=__—-==

v [(%) + (gf;)z ' (i_j;' )2]1.@

Since the constraint force is expressed as

[4.3.1

F'=Fi+Fi+Fk [4.3.1

when we compare Eqs. [4.3.12] and [4.3.13] we conclude that the components &

the constraint force must be proportional to the partial derivatives of the constrais
or

Fy F'

ax ﬂy a4z

Now, consider the work done by the constraint force as the particle moves

from position r to r + dr. Denoting this incremental work by dW and considering
Eqgs. [4.3.11] and [4.3.12], we obtain

dW = F'sdr = F'nedr = lgﬂ'ﬁ'f edr =0 [4.3.15)

This relation indicates that the work done by a holonomic constraint force which
independent of time in any possible displacement is zero. Such constraints are re-
ferred to as workless constraints. This result is to be expected, because the constraimt
force is always perpendicular to the velocity.
Note that, while the total work done by the constraint forces that are independest

of time 18 zero, the individual constraint forces are doing work themselves. This work
18 in the form of transferring energy from one component of the system to the other
The sum of the transferred energies is zero. To visualize this, consider the double lir
in Fig. 4.3, whose free-body diagram is given in Fig. 4.7. If the first link is given 2
initial motion, the second link will begin moving, and vice versa. The motion of the
second link 1s initiated by the constraint forces acting at point B.

(a) (&)

Figure 4.7 Free-body diagram of double link
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Considering Fig. 4.7, reaction forces, such as the forces at the pin at O and at
point B, are holonomic constraint forces. Normal forces are also holonomic constraint
forces. However, friction forces are not constraint forces, even though their magni-
tude 18 directly dependent on a constraint force. Nevertheless, for static problems one
can treat friction as a reaction force, because in such cases friction prevents motion.

Next consider a holonomic constraint that is an explicit function of time. For the
particle considered earlier, this implies that the surface is moving and the constraint
i the form f = f(x, y, z t). Using Egs. [4.3.4a] and [4.3.9] we obtain

Viev= —i+ =y+ — [4.3.16]

which implies that Vf «dr # 0. It follows that the incremental work d W, which now

s not a perfect differential as time is explicitly involved, is not zero. The incremental
work has the form

dW = F'edr = F'nedr = %?f*dr# 0 [4.3.17]

When the holonomic constraint is time dependent, the work performed by the

corresponding constraint force is not zero. The path followed by the particle can no

wonger be described by the path variables associated with the surface. The vector n

&=scribes the normal to the surface, but it is not the normal to the path followed by
e particle.

4.3.2 NONHOLONOMIC CONSTRAINTS

When the constraint is nonholonomic, it can only be expressed in the form of
£gs. [4.3.5] or [4.3.6], as an integrating factor does not exist to permit expres-
son 1n the form of Egs. [4.3.1] or [4.3.2]. Consequently, none of the preceding
s=sults we obtained regarding the work done by the constraint force are valid for
sonholonomic constraints. The constraint force associated with a nonholonomic
constraint cannot be expressed as a force normal to a surface, as the nonholonomic
wonstraint does not define a surface. One can go into the space spanned by ¢;(¢) and
@) (1 = 1,2,..., n)and define a surface there, but this does not give any physical
msight or significant results. Hence, there is no general expression for the constraint
sarce when the constraint is nonholonomic.

A common example of a nonholonomic constraint is the rolling without slipping
a¢ a body with no sharp corners or edges, such as a disk or a sphere.

In general, constraint equations in terms of relative velocities and especially
Sose involving angular velocities that are not “simple” turn out to be nonholonomic.

Recall the discussion of angular velocity in Chapter 2. When a reference frame is de-
~wmibed by successive rotations about nonparallel axes, the resulting angular velocity
cannot be described as the derivative of a vector.

Other examples of nonholonomic systems are from vehicle dynamics. Included
= this category are the motions of ships, missiles, airplanes, automobiles, wheel-
Sarrows, shopping carts, and sleds. Figure 4.8 is a simplified illustration of such
& vehicle undergoing plane motion, such as a sled. Vehicles usually have a plane

223




224 CHAPTER 4 ® ANALYTICAL MECHANICS: Basic CONCEPTS

P
SN E

Figure 4.8 Generic model of a vehicle

of symmetry, and they are propelled in a way that the guiding forces act primariiy
along the symmetry plane, with a very small component of the force used to change
direction. A steering mechanism usually accomplishes the change in direction.
One then makes the assumption that there is a point along the plane of symmetry.
denoted by A, such that the velocity of pointA is always along the plane of symmetry.
The location of this point depends on the vehicle and the types of forces that preveat
point A from having a velocity component perpendicular to the plane of symmetry.
In a tricycle or automobile, the point A is in the middle between the rear wheels. Is
a boat, the hydrodynamic forces determine the location of A.
Consider the vehicle in Fig. 4.8. The configuration of this system can be de-
scribed by the coordinates of point A, X4 and Y4, and by the angle the body makes
with the inertial X axis, denoted by #. The nonholonomic constraint is associated
with the translational velocity of point A. Denoting this velocity by v4, we write it &

Va = Xal+ Y4l [4.3.18]
The constraint is written as
va*i=0 [4.3.19])
where j = cosAJ — sin #1. Introducing Eq. [4.3.19] into Eq. [4.3.18], we obtain
vi*j = (X4l + Y4J)(—sin 01 + cos 8])
= —X,4sinf + Y4cosf = 0 [4.3.20])

This equation can conveniently be expressed as

Y
T [4.3.21]

g —
A tan@

It is clear that this constraint is nonholonomic. The associated constraint force
is basically the resistance of point A to have any motion perpendicular to the line
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 mwotion. In an automobile, for example, this force would be the friction force be-
- en the rear tires and the road surface in the direction perpendicular to the velocity
¢ the tires. A very strong wind in the lateral direction, collision with another vehicle,
wking a turn with high speed would violate this constraint.
In general, the constraint force associated with a nonholonomic constraint per-
ms work. A special case when this 1s not valid is rolling without slipping, where
#e friction force is applied to a point with zero velocity. For roll without slip, friction
—es a constraint force, as it reduces the number of degrees of freedom.
We next look into determining whether a constraint is holonomic or not. In gen-
o) whether it is or is not can be ascertained by visual inspection. Mathematically,
~eder for a constraint in Pfaffian or velocity form to be integrable to configura-
form. the constraint relation must satisfy differentiability conditions. The con-
wsnt must represent an exact differential. Consider Eq. [4.3.6]. If the jth constraint
Q. son is holonomic, one should be able to write it as fi(q1. 92+ -+ Gn ) = 0.
sung the differential of f; and, for the most general case, dividing it by an inte-
sng factor g;(q1, g2, - - -» gn) WE OD1AIN Eq. [4.3.3b]. Comparing Eq. [4.3.4b] with
14.3.6], we obtain for the general case of a holonomic constraint

af; af;
—'&- = £iQjk "(% = £idjp ) e T [4.3.22]
For a constraint given by Eq. [4.3.6] to be holonomic, there must be a function

_and an integrating factor g;(q1, g2, ---»qn) (J = 1,2,...,m) where the partial
swatives of f;(j = 1, 2. ..., m) satisfy Eq. [4.3.22]. To check this, we evaluate

second derivatives of f;. Indeed, considering an index r, we obtain

d* fi i, 3 fi d
' = (gia; and o= — (gia;) [4.3.23]
dqidqr  Aqr 814jt) aqidqr  0qk iy
ﬂlff d -f?zfj o .
aq,ot - r?qr(g‘ra"ﬂ} il dq, ot B E(g"ﬂ""r)
BT BT = 420w M [4.3.24]

From Egs. [4.3.23] and [4.3.24] if an integrating factor g; exists such that a ;i
¥ & o satisfy the relations

d 4, ¢ d
%:(Ejﬂjk) = ﬁ_{h‘(gjﬂjr} ﬁqr'igjﬂjﬂ} = ';?_I{Sjﬂjr)
r= 1ot f=1L2000.m [4.3.25]

#e constraint is holonomic. The problem with using the above procedure is that
not be easy to find the integrating factor, especially for systems having more

three degrees of freedom.

A constraint of the form f(q1, g2, ..  gn 1) = 0.0r > apgr + ag = 0, that is,

mequality constraint, is nonholonomic because it cannot be reduced to a form

gz G 1) = 0. Such constraints require 2 different treatment than equality

ints. We also encounter constraints that are valid in some positions of the body
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or during certain intervals of the motion. Such constraints can also be classified as
inequality constraints. They can be found in problems involving contact.

Consider now a system that originally has n degrees of freedom and is subjected
to m holonomic constraints. Introduction of m constraints reduces the degrees of
freedom by m to p = n — m, resulting in a set of m excess, or surplus, coordinates.

It 1s possible, at least mathematically, to eliminate the surplus coordinates frem
the formulation, which results in an unconstrained system of order n — m. Because
of this, unconstrained systems are referred to as holonomic.

By contrast, a nonholonomic constraint constrains only the generalized veloci
ties, without atfecting the generalized coordinates. In such systems there are n inde-
pendent generalized coordinates and n — m independent generalized velocities.

Example
4.1

A bead is sliding in a tube, whose shape is given by the equation y = 1 — x?, as shown i
Fig. 4.9. Find the direction of the normal to the tube.

Solution

One can solve this problem in a number of ways. We first consider the problem from a physica
standpoint. Because the bead is sliding in the tube. the equation defining the shape of the
becomes the constraint equation, and it has the torm

flx,y) =y=1+x*=0
Taking the partial derivatives of f, we obtain

9 = X of = ]
dx dy

s0 that, using Eq. [4.3.8], the gradient of f has the form Vf = 2xi + j. From Eq. [4.3.12]. the
unit vector in the normal direction (chosen, for convenience, positive outward) becomes

2xi+ )
J1 4 4x2

—
_

As expected, because the constraint is not an explicit function of time, neither is the directios
of the constraint force. The constraint is, of course, holonomic.
To solve this problem geometrically, we define the angle # between the horizontal a
the tangent to the curve. The tangent of #(x) describes the slope of the tube, and
dy

tanf = — = —2x
dx

x Figure 4.9  Bead sliding inside a tube
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We find the sine and cosine of # by

: 2
sinfl = 2 cosf = — : [e]

J 1+ 4x2 J1+4x?

Now we can express the unit vector describing the normal as

2xi +j
V1 +4x2

We can also determine the normal direction directly from the geometry, using the ap-

proach in Chapter 1, without going into any constraint equations. Denoting the path variable
by x, we write the position vector as

n = sinfi—cosflj =

[fl

r=xi+(1-2x%j [g]

and the expressions for the slope and the unit vector in the tangential direction become

dr . i — 2xj _
r' = — =1{-2xj 8 = s =1+ 4x2 [h]
dx Y 1 +ax

Use of Eq. [1.3.36] yields n. When the path parameters associated with the motion of a body
are specified, in essence a constraint has been imposed on an otherwise free body.
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A block of mass m 1s attached to a cord of original length L and is rotating about a thin hub,
as shown in Fig. 4.10. Friction is negligible. Find the constraint force if (a) the cord is not
wrapping around the hub, and (b) the cord is wrapping around the hub.

2. When the cord is not wrapping around the hub, the constraint is holonomic and independent

of time. The constraint equation basically describes that the length of the cord is constant, and
it has the form

fl,y) =2+ —L*=0 [a]

b e e e e o e e
: &*fwﬁxrﬁga
o -;-_g :

e 7
=
e

-
e

+++++++

e

i _E"\-a-c-'\-a-c-'
H :
- ?ﬁ% ﬁ%; .. w
" e g T
=i e T o S ERE AT i ﬂﬁ3+$3£ﬁ+¢x :-\.::E“E;w e '.ri-'-’
S e T e
2 i

(a) ()

Figure 4.10 Mass rotating around a thin hub (g} Cord is not
wrapping around hub (b) Cord is wrapping
around hub

| Example
4.2
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Once motion is initiated, the mass keeps rotating with the same speed and the energy of the
particle does not change. The constraint force is the tension in the rope, and it does no work.

b. The situation is quite different when the rope wraps around the hub. Assuming that the hub
radius is very small, the tension in the rope is directed toward point O. Summing moments
about O, we obtain

> Mp=0 [b]

so that the angular momentum about O is conserved. In essence, we have a central force
problem. Let us use polar coordinates r and 6. Consider that the length of the rope, denoted
by r. reduces continuously by the relation

r=1L=r,0 [e]

where r, is the radius of the hub. In one revolution of the mass, the rope shortens by 27r,.
The angular momentum about O is given by Hgp = mr28. Because the angular momen-
tum 1s conserved,

720 = constant = h [l

where we note that the constant A is always greater than zero, A > 0, and that A is a function
of the initial condition. Differentiating the relation between r and ¢, we write

= == —— [e]

rt’]‘

and substituting the above relation into Eq. [d], we obtain

2w Tl 5 [
Yo
or
= —rrtf = —roh=C C <0 (gl
where C is constant. Now, let us find the response r(f). We can rewrite Eq. [g] as
rdr = Cdt (k]
which, when integrated, gives
A3
3 Ct+ D [i

where D is a constant of integration, determined from the initial conditions. We note that &
t = 0.7 = L, and from Eq. [i] /3 = D, so that D = L°/3. Considering that the length of
the rope is related to x and y by r* = x* + y*, we can write Eq. [1] as

I e
3 3

The constraint is a time-dependent holonomic constraint, that is, a rheonomic constraint.
The constraint force, which is the tension in the rope, does perform work. To show that the
constraint force does indeed perform work, we consider the configuration vector r and its
derivative

flx, 3,0 Ct =0 [

r=re i=re, + rée; [k}




4.3 CONSTRAINTS 229

The constraint force (the tension in the rope) can be expressed as F' = —Fe,, so that the
dot product between the constraint force and the particle velocity becomes

F'r = —FrF [

which is not zero. Note that for the case when the length of the rope is not changing, r = 0, and

the work done by the constraint 18 zero. Also note that in order to find an explicit expression
for r(t), the initial angular velocity must be specified.

Given a system with generalized coordinates ¢, and ¢» and the constraint equation | Example
4.3

(3'&‘1 sing; + ? + E)dm +(gicosqa + 2g2)dgy = 0
1

determine whether the constraint 1s holonomic or not.

The constraint equation is holonomic if there exists an integrating factor g(g;, g2), such that
Eqg. [4.3.22] holds, or
af

4 af

; , g 3
—— = 3Jggsing; + == + 2 —— = cosgs + 2 a
B ARG TR = MR [a]
We observe that if g(q,, g2) = ¢, then
df ; d
—— = 3-:;% sings + g5 + 2q; —£ = qjlcusqg + 2¢14> k]
dq, aq2

Integrating the two expressions, we obtain

f=qising +q@ + ¢t +hilg) +C  f=gqising: + qiqs + ha(g) + C [el

where iy and h; are functions that appear as a result of the integration over ¢ and g3, respec-
uvely, and C; and C; are constants. Comparing the two integrated terms, we conclude that
%:(g) = ¢+ and hi(g2) = 0 and that the constants are related by C; = C,. The constraint,
therefore, is holonomic and has the form

flgnq) = qisings +qigs + g1+ C =0 [d]

where C is a constant. For this problem the integrating factor was found by visual inspection.
= general, there are no set guidelines for finding the integrating factor.

The tip of the double-link mechanism in Fig. 4.11 is constrained to lie on the inclined plane. | Example
Derive the constraint equation and express it in velocity form. 4.4

Solution

s 1s a single degree of freedom system. We use #, and #, as generalized coordinates.
Hence, we need one constraint equation. We can simplify the formulation by expressing the
sosition of the tip along the incline by the variable s. To derive the constraint equation we
wnite the position vector of the tip in two ways: using the links and using the incline. Using
e links, the position vector has the form

rp = (Lycost + Lacos8:)i+ (L sinf; + L;siné,)j [a]
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Figure 4.11

and using the incline, it has the form

s BB i
p = ——li+scosyi+ssinyj [b]

We equate the above two expressions and separate components in the x and y directions, thus

Lycosty + Lycosts = % + 5 cos s [e]

Lisin@| + Lasinf, = 5 sin i [d]

To obtain the constraint equation, we eliminate s by multiplying Eq. [c] by sin s and Eq. [d]
by —cos iy and adding the two equations. Dividing the result by L sin s, we obtain

Lo | L . 3
08¢ + — cosf; — ; - - = =
cos i L cos @5 anv sinf, e sin 5 5 [e]

which 1s recognized as the holonomic constraint equation. To express this constraint n ve-
locity form, we differentiate Eq. [e] with respect (o time, with the result

; cosf \: La [, cosfly\.
(smHI + t&ﬂi,f!)ﬂl + z—l(smﬂg + i )Hg = () [f]

4.4 VIRTUAL DISPLACEMENTS AND VIRTUAL WORK

At this point, we introduce the variational notation. The variational notation 1s ide-
ally suited for dynamics problems because it makes the formulation concise, and
it has a meaningful physical interpretation. When applied to dynamical systems,
the variations of displacements are known as virtual displacements, denoted by
ox, 6y, 8z, etc. In terms of generalized coordinates, the virtual displacements
have the form é¢q;, 6q>,..., 6g,. The variations of the velocities are denoted
by 8x, dy, 62 for physical coordinates and é¢; (k = 1,2,...,n) for generalized
velocities.




4.4 VIRTUAL INSPLACEMENTS AND VIRTUAL WORK

Virtual displacements have the following properties:

® They are infinitesimal displacements.
® They are consistent with the system constraints, but are arbitrary otherwise.

* The variation of displacements (or velocities, etc.) is obtained by holding time
fixed; therefore, virtual displacements can be considered as occurring instanta-
neously, and time is not involved in their applications.

Dealing with virtual displacements is like imagining the system in a different po-
sition that is physically realizable, while freezing time. It is as if a different set of
forces were applied and, as a result, the system moved to another location by one of
the admissible paths it can follow.

The rules for calculating virtual displacements are intimately related to the rules
of differentiation. For the position vector r = x(Di + y(1)j + z(Ok, or r = r(q1,
@3, ..., {n, 1), the variation of r becomes

ar ar ar
or = oxi+oyj+ézk or ér= —Og + —dg>, +... + —0bg,
¥l : q q1 i q2 3dn q
[4.4.1a,b]

Figure 4.12 depicts the concept of a variation (for the coordinate v). When expressing
the motion r = xi + yj + gk in which x, y, and z are all functions of the generalized
coordinates, the variation of r has the form

" [ dx Ay dz
= Bochiiel, S —— kI8 a.4.2
or ;.;:1 (é'r}'kl + -:?q;c'] + &qkk qi [ 1

As discussed in Appendix B, we distinguish between dependent and indepen-
dent variables. For dynamical systems, time is the independent variable. The co-
ordinates x, y, z, as well gy, g2, . . ., g, are functions of time and are referred to as
the dependent variables. The term dependent 1s used here to denote explicit depen-
dence of the generalized coordinates on time, rather than on each other. It follows
that one can interchange the time differentiation and the variation operators. That is,
8g; = oldgldt) = d(dgp)ldt (k = 1,2,...,n).

The variation of a position vector can be obtained in two different ways. One way
is by obtaining an analytical expression for the position vector and taking its variation

y+ Oy

o yir) 5
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Figure 4.12  Voriation of y
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by differentiating with respect to the generalized coordinates. Basically this is the
use of Eq. [4.4.1b]; 1t 1s known as the analytical approach. This approach may lead
to lengthy expressions for certain complex problems. When r is expressed in terms
of the coordinates of a moving reference frame, one must also take the variation of
the unit vectors of the moving reference frame. The exception to this is when the
motion of the relative frame is prespecified as a known quantity and is not treated as
a motion variable.

In the second way, known as the kinematical approach, one explores similari-
ties between velocities and virtual displacements. When taking the variation of an
expression, the independent vanable 1s not varied. We use this property, as time is
the independent variable. The time derivative of r is

i-—;::iJr"Jm'zquﬂ f—ﬂ'+ﬂr'+---+ﬂr'+&r
Y ot ' T a2 il 7
[4.4.3a,b]

Elimination of the partial derivative of r with respect to time, elimination of
all expressions explicit in time, and replacement of x by dx, y by v, z by 8z in
Eq.[443a]landof g, (k = 1, 2,..., n) with 6g; in Eq. [4.4.3b] yields the variation
of r. This implies that if the expression for the velocity is known, the associated
virtual displacement can be obtained directly from it. This approach of calculating
virtual displacements from velocities is especially useful when the velocity of a point
can be found using an instant center or a relative velocity expression, such as

Vg = V4 + 0 X I'g/4a T Virel [4.4.4]

The vanation of the displacement of point B 1s
org = ory + 00 X rg/a + Orgp [4.4.5]

where we note that the rg/4 term is left intact and that 60 represents the variation
of an infinitesimal rotation. Also, keeping in line with the developments in Chapter
2, we extend the boldface to the entire term 60 to denote that 80 is a variation of a
rotation and that it is not obtained by differentiating a vector.

Consider Eq. [4.4.3b] and the derivative of r with respect to g;. Of all the terms
in Eq. [4.4.3b] only one survives and we obtain the important relationship

ar ar
—_— = — k=12 ....n [4.4.6]
dqr 04y
so that the vanation of r can be expressed as
Ze aT
or = —0q [4.4.7]
2+ i

Note that Eq. [4.4.7] is in essence the mathematical representation of the kine-
matical method of calculating virtual displacements. Next, consider the holonomic
constraint f(x, y, z, ) = 0 and obtain its variation, which has the form

_9f

af & «
of = Hﬁx + an + Eaz = () [4.4.8]




8.4 VIiRTUAL DISPLACEMENTS AND VIRTUAL WORK

Because time is held fixed while f is varied, 6f has the same form whether the
constraint is time dependent or not. When a constraint is given in velocity form by
Egs. [4.3.5] and [4.3.6], in terms of physical coordinates the virtual displacements
satisfy

adx + a0y + a0z =0 [4.4.9]
and, in terms of generalized coordinates and the jth constraint, they satisfy
6f; = ajdq +ajdgs + 0 + ajdgy ji=12....,m [4.4.10]

Let us next consider the work done by a force over a virtual displacement. Con-
sider a body acted upon by a force F and the virtual displacement associated with
the point at which the force F is applied. We define the work done by the force over
the virtual displacement 8r as the virtual work or variation of work and denote it by
5W. Hence

oW = Feér [4.4.11]

We will examine the virtual work associated with a general force in the next
section. For now, let us consider the holonomic constraint f(x, y, z, f) = 0 and the
sssociated virtual work. Recall that whether the constraint is time dependent or not
i immaterial. From Eqs. [4.3.11]-{4.3.14], the constraint force F' has the form

_ : F' (of. of. 0of F'
F =Fi+Fi+Fk === i+ —j+ =k|= ==V 4.4.12
* SR |Tf|(r5'x ri_v'] dz ) IVf| JI ]

We define by 8W' the work performed by the constraint force in any virtual dis-
placement virtual work due to constraint forces, as

SW' = F'+dr = F.8x + F,8y + F 6z [4.4.13]
Using Egs. [4.4.1] and [4.4.8] we conclude that
OW' = F'+dr = i?f-ﬁr = j:;—ﬁf = () [4.4.14]
V£ VS|

w0 that the work performed by a holonomic constraint force in any virtual displace-
ment 1s zero.
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& disk of radius R rolls without slipping on a rod of length L pivoted at one end, as shown in
Fig. 4.13. Denoting the pivot angle by 6 and the angular displacement of the disk by ¢, find
e virtual displacement of the center of the disk.

Solution

We will solve this problem using both a kinematical and an analytical approach. We begin
with the kinematical approach. We select an inertial frame XYZ and a relative frame xyz,
such that the x vz axes are obtained by rotating the X¥Z frame by an angle # counterclockwise

shout the Z axis.
The velocity of point G can be written as

Yo = Vg +® X Tgp+ Vel [-]
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Figure 4.13 Disk rolling over bar

mwhich vy = 0, = ok, and

rop =Tc = (L—ROI+R] Ve = —Ri [b, ¢l
Substituting the above values into Eq. [a] we obtain
vo = 0Kk X [(L — R)i + Rj]l — Rpi = —R(p + 0)i + (LB — Rp8)j Id]

Thus, we write the variation of r¢; as
Org = —R(6p + 660) + (LSO — Rp60)) [e]

Now we will find the varation of rg analytically. The position vector rg 18 given in
Eq. [b]. There are two ways to obtain its variation. In the first, we express rg in terms of the
inertial coordinate frame and then differentiate. In the second, we take the variation of Eq.

[b] directly, which requires the variation of the unit vectors i and j of the moving frame. The
relation between the unit vectors of the mertial and relative frames 1s

SR e "
Introducing this into Eq. [b], we obtain
rg = [(L — R$p)cos@ — RsinB]I + [(L — Rp)sinb + RcosB]J g9l
The virtual displacement then becomes
org = [—(L — R¢)sinf 66 — Rcosfl 8¢ — Reos 801
+ [(L — Rp)cos8 86 — Rsinf 8¢ — Rsiné 661) [h]

To convert the virtual displacement in terms of the relative frame, we introduce the relation-
ships

I = cosfi — sinfj J = sinfi + cos B [i]
into Eq. [h], which gives Eq. [e].
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Next, take the variation of Eq. [b] directly, with the result
org = —Rédi+ (L — RP)Si + REj [il
From Eq. [f], the variations of the unit vectors have the form
61 = —sinf 601+ cos# b6 ] = 66j 0] = —cos0801—5infd6) = —86i [kl

Equations [k] can also be obtained directly from the rates of change of the unit vectors.
Indeed, recalling that the angular velocity is @ = 6k, the derivatives of the unit vectors are
e M s a
E—mxi-ﬂ_] Emm}{_]— i [

from which the variations can be calculated easily. Introducing Egs. [k] into Eq. [j], we obtain

Eq. [e].
We have thus obtained the variation of r¢; three different ways. It is clear that the number
of manipulations is the least when we obtain the variation of ri; from the velocity expressions,
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Consider the two-link mechanism in Fig. 4.3. A force F is acting at point P, Find the virtual
work expression for each link and demonstrate that Eq. [4.4.14] holds.

Sclufion

The free-body diagrams of the link are shown in Fig. 4.7. For the first link, the forces that
contribute to the virtual work are the reactions at point B and the force of gravity at the mass
center (5;. The forces can be expressed in vector form as

Fg = B\i+ B,j For = —mgj [a]
The associated displacement vectors are

Ly L

rp = LisOi-Licoij rg = 5 s6ii— .21 cyj [b]
so that the virtual displacements become
) . L, o o A .
org = Lich,60i+ L;s6,560,j org, = EEH;EHH"F ?531591_] [<]
We thus find the virtual work for the first link as
= g B m!.HLl
EWM| -t F;;'ﬁl‘g —-mlg_]*ﬁr;;] — B_TL[EEI o +H}-L|SE]331 — 7 SE|§B] [d]

For the second link, the virtual work is due to the reactions at point B, gravity acting
through the center of mass of the link G,, and the external force F at the tip P, The forces at
8 are equal and opposite of Fg. The other forces can be expressed by

F=F+Fj Fg, = —magj [e]
with associated displacements

rp = (LysO) + Lysy)i— (LycOy + Lych)j

L L "
l"{_';:,_ :(Llﬂf.‘}l+§Sﬂg)i_(.{,lﬂﬂ1+§ﬂﬂg)] [']

| Example
4.6
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whose variations are

Srp = (L1¢c086, + Lyc0;80,)i + (Lys6,60; + Lys0,603))

Erﬁl = (L| chi68, + % Eﬂzaﬂg)i N3 (Lg st 00 + I; Eﬁ'pﬁﬂg)j Ig]
We now find the virtual work for the second link as
Swlinb:_ﬂ — —Fﬂ'ﬁrﬂ + F'ﬁrp = m:gj‘-ﬁl'(_;z [I‘I]

The virtual work of the entire system is found by adding Eqgs. [d] and [h], with the result
5W i 5W]in1.;] + Ew}inﬁ = F . ﬁl"p - ngj - ﬁl",r_,;E - m|gj - ﬁl‘nl [i]

The only terms that contribute to the virtual work are those associated with the external
forces. The contribution of the holenomic constraint forces (in this case the reaction at point
B) to the virtual work 18 zero.

Taking the dot products, we write Eq. [1] in terms of the generalized coordinates as

oW = FI{Ll-E‘-H}ﬁHi - Lgﬂﬁgﬁﬂg)-FFUfLIHﬁnﬁlﬁi - Lgﬂﬁgﬁﬁg]

= Fng(L1 SH] Bﬂ'l -+ %Lz 5515&1)— %m.gL. Sﬁ'lﬁﬂ]

— (F_,_,L, cé + FyLysty —magl,56, — %mlng 5&.)361

I >
+ (F_rLg ¢l + F}-Lg sfz — 3 maglss ﬂ:) a6 (il

Consider next the problem of having not a pinned joint at point 8, but a joint that permits
sliding motion, such as the collar shown in Fig. 4.14. Such a joint, as we will see in more detail
in Chapter 7, is called a prismatic joint. The free-body diagram is illustrated in Fig. 4.15. The
friction force at the sliding joint must be considered, and the forces that the two bodies exert
on each other are split into two parts: a normal force N and a friction force #;. Introducing
the unit vectors €; and e; along and perpendicular to the link, we express the normal and

Figure 4.14

(a) (F)

Prismatic joint Figure 4.15 Free-body diagrams
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friction forces on the two rods as
Fn = Ne Ff = Ffﬂz [k]

Note also that because of sliding, the points B on the first link and on the collar do not
have the same velocity. Denoting these points by B, and B, and introducing a generalized
coordinate ¢ to describe the sliding of link 2, the position vectors for B, and B» become

Fp, = Iy Tp, = Iy + ge; [l
The virtual work expression has the form
OWini = (Fy + Fy)+dry — mgj«drg,
OWinky = —(Fy + Fy)+drg, + Fedrp — mygj «drg, [m]
so that the virtual work for the entire system is
OW = Wik + 0Wyao = —Fr g + Fedrp — magj = 0rg, — migj*drg, [n]

The contribution of the friction force to the virtual work is clear. Note that in order to
determine the magnitude of the friction force, we need to have the normal force, which is
absent from the above expression. This, basically, is the typical problem encountered when
formulating problems involving friction. Also note that the position vectors for the center
of mass and for the tip of the second rod change when the sliding joint is introduced to the
problem.
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Consider the system of particles in Fig. 4.16. The jth particle exerts a force of F; i
on the ith particle (i, j = 1,2,..., N). The resultant of all forces acting on the ith
particle is denoted by R; and has the form

N
Ri=F,+F/=F;+>F; i=12..N [4.5.1]

Figure 4.16
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where F; denotes the sum of all external (impressed, applied) forces exerted on the
ith particle and F; is the sum of all internal forces (constraint or reaction forces that
one particle exerts on the other).

The virtual work for each particle is defined as

BW, — Rj » 51‘, [4-!-:1
One obtains the virtual work for the entire system by summing over the individual
particles

N N
W = D 8W; = > R, 6r; [4.5.3]
=1 =]

Substituting Eq. [4.5.1] into Eq. [4.5.3],
N N
SW = > Fi*br;+ > Fj«8r [4.5.4]

=1 i=1

We showed in Eq. [4.4.14] that the total work performed by the constraint forces in
any virtual displacement is zero. It follows that the second term on the right side of
the above equation vanishes because

N
> Fjedr; =0 [4.5.5]

=1

and the expression for the virtual work becomes
N
8W = > F;*dr, [4.5.6]
i=1

[t is of interest to examine the virtual work in terms of generalized coordinates.
We express the displacement of each particle in terms of a set of n generalized coor-

dinates g, (k = 1,2,...,n)asr; = 191,92, ....qun1). (i = 1,2,..., N). The vari-
ation of r; 1s

. & fi’l";
8r; = > — 8, [4.5.7]
i=]

Substitution of Eq. [4.5.7] into the expression for virtual work yields

SW = D> Fisdri= > Fie> —dqr= > ZFf-ﬁqk dgr [4.5.8]
i=1 |

=1 k=% =1 \=1

We define the term inside the fences in the above equation as generalized forces and
write

or;
e Fj . I k — ]_, 2, it -
0 = B n [4.5.9]
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where Qy is the generalized force associated with the kth generalized coordinate.
We can then express the virtual work as

fl
oW = z Qk ﬁqk [4.5.10]

The relation between a generalized coordinate and a generalized force is anal-
ogous to the relation between a physical coordinate and the force applied in the
direction of that coordinate. Also, the dimensional relation between generalized co-
ordinates and generalized forces is worth noting. The product of Q; and 84, has the
same units as the variation of energy. For example, if the generalized coordinate de-
scribes a displacement, the generalized force has the units of force. If the generalized
coordinate describes a rotation, the generalized force becomes a moment.

Recalling from the previous section that the variations are often calculated with
more ease by velocity relations, we make use of Eq. [4.4.6]

ar iy
— . — k=1,2,...,ﬂ [‘.!-"]
dgr  dqy
to express the generalized forces as
N N
ar; &‘r,
£ =2 F Iqi ; I

Another way of calculating generalized forces is based on the nature of the ap-
plied forces. For a conservative system, because dW is a perfect differential, the
virtual work can be written as the variation of the negative of the potential energy,
or

N
SW = > Fi+dr; = -8V [4.5.13]

i=1

in which V is the potential function, or the potential energy. The variation of the
potential energy in terms of physical coordinates is

é”if"

When there are no constraints acting on the system, x;, y;,and z; (i = 1,2,..., N)
are independent. It follows that 8 x;, 8 y; and 8z; are arbitrary, and using Egs. [4.5.13]
and [4.5.14], we obtain

j:_ ~ o = ﬁ =~y [4.5.15]

X;

In terms of independent generalized coordinates, and when all the applied forces
are conservative, the virtual work expressinn can be written as
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Comparing Eqgs. [4.5.16] and [4.5.10], and considering the independence of the
variations of the generalized coordinates, we conclude that the generalized forces
are related to the potential energy by
d
dq
In the presence of both conservative and nonconservative forces, the virtual work
and generalized forces can be written as
oW = =6V + oW, [4.5.18]
v & ar;
- = - Fipe*t— 4.5.19
Q.l: ch + anc f?q.l: + ; inc "5?*}’1: [ |
where the notation is obvious. When they are constant, nonconservative forces can
be treated as conservative.
In summary, one can use a number of ways to calculate generalized forces:
1. Write Eq. [4.5.6] and after the virtual work is calculated collect coefficients of
gy (ki =1,2,...; n).
Calculate dr;/dg, (or dri/dq,) and use Eq. [4.5.12].
3. Take advantage of the potential energy and use Eq. [4.5.17] for the conservative
forces.
The reader is encouraged to use and compare all three approaches.
Example Find the generalized forces for the mechanism in Fig. 4.3 (Example 4.6).
4.7

Solution

The generalized coordinates are &, and ;. We will calculate the generalized forces in a num-
ber of ways. First, we take the expression for virtual work from Eq. [j] in Example 4.6, thus

L
oW = (F,;L1CH| +F};L] Hﬁl —m;gL|Sﬂ| —H'Hg—% 5&])5&1

+ (FILgﬂﬂz > F:.;Lj sHy — m;g% 59;)5&2 [a]

so that we can identify the generalized forces as

1
Q) = F;Lict + F,L ;s —maglyst) — Emlngsﬂl

]
Oy = Fylaclz + FyLy 567 — E’”EELEEHE [b]
Next, consider each force and dr;/dq,. For the first link we have one external force,
gravity, and

7 L S 2
FG1 = —ImZg) e, = %EH]I— EIEEL] [t]
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so that

drg, L, . Ly i drg,
70, —-j-u.:ﬁ.hL > §61j — = [d]

There are two external forces acting on the second link, written

F = F.i _|_ij rp = {L1381 +Lg Eﬂg]i— {LTCHI +L1":Hl}j

L L
F.D,-j = —mggj I‘GE - (L|ﬁﬂ]+§'ﬁﬂg)i_(£1|l:ﬂj +§Cﬂg)j ['ll
s0 that
arp . y drp y i
TR . = a2l + L9 §
70, LiycOji+ Lyso) 76, LacBii + Lasfsj
e ; : org, 1 i1 :
é‘ﬂ? B L|E5|I+L1SH1J c?ﬂi" = EL;C&';I-F ELEEH?J [']
Applying Eq. [4.5.12] we obtain
f?l"g] E?['F E?I'EE
= ] .« 4 -
& = Fe, a0, ¥ 56,  Ye a8,
= _%mlgl.1591‘?ﬂgg£|5ﬂ| +FIL]CHI+FFL]SH|
B drg, Jdrp arg,
Qg-—F{” ﬂﬂg + F -&—E-:-_II_FE'E r?ﬂg
= _%mEELEEEE + FelacBa + F,_,-Lg 565 [ﬂ]

which are the same as Eq. [b].

Finally, we make use of the potential energy to calculate the portion of the generalized
forces associated with the gravitational forces. Taking point O as the datum, we write the
potential energy as

L LA

V= —mlg?lcﬂ. —magLy ¢ — myg—=" 8, [h]

hence, the generalized forces due to the conservative forces become

dV |
Qi = T ‘Eml.ﬁ'h st — mygL;s8,
av I

¢ = ——— = ——maglist i
Qs 36, 5 Migka80; [i]

It is easy to see that the use of potential energy simplifies the calculation of the general-
ized forces.

241

4.6 PrINCIPLE OF VIRTUAL WORK FOR STATIC EQUILIBRIUM

Let us now consider static equilibrium. For a dynamical system, static equilibrium
is described as the state where all components of the system are at rest, with zero
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velocity and zero acceleration. To find the equilibrium position, one can write the
equilibrium equations using Newton’s second law and solve these equations. The
disadvantage of doing so is that if the motions of any two components are related to
each other with a constraint relation, then the associated constraint forces must be
calculated in the process. This may become tedious for systems with several inter-
connected components. Encouraged by the results of the previous section, we seek
a different solution to the equilibrium problem that does not require one to solve for
the constraint equations.

At equilibrium, the resultant force on each component of a system must be zero.
Hence,wehaveR; = 0(i = 1,2, ..., N).Itfollows from Eq. [4.5.3] that since every
resultant R; = 0, the virtual work must vanish as well and we must have 8W = 0.
Introducing this into Eq. [4.5.6] gives

N
W = > Fi*dr; = 0 [4.6.1]

=1

The above equation, first formulated by Johann Bernoulli, is known as the
principle of virtual work for static equilibrium. Tt basically states that, at static
equilibrium, the work performed by the external, impressed forces through virtual
displacements compatible with the system constraints is zero. It can easily be ex-
tended to rigid bodies if we consider r; to be the displacement of the point on the
body to which the force F; is applied.

Let us consider the principle of virtual work in terms of generalized forces. It
follows from Eq. [4.5.10] that at equilibrium

W = > 048g, =0 [4.6.2]
k=1

When the system is represented in terms of independent generalized coordinates.
because the generalized coordinates are independent of each other, their variations
dqy also are independent. Therefore, for Eq. [4.6.2] to hold, each of the coefficients
of dqy, that is, Oy, must vanish individually. We write

N N :
JdT; aT;
ka E F[-. r . E Fi' X = {) k=l,2,...,rr [4.6.3]

In the presence of conservative forces we can take advantage of the potential energy
and write

— anr =0 [4.6.4]

The above results can also be interpreted as follows: Because independent general-
1zed coordinates represent the independent motion of each degree of freedom, their
corresponding generalized forces must vanish at equilibrium.

As 1n the previous section, one can follow two approaches when solving static
equilibrium problems using the principle of virtual work:
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I. One can work with physical coordinates and use Eq. [4.6.1].

tJ

One can select a set of generalized coordinates, calculate the associated gener-
alized forces, and use Eq. [4.6.3] or [4.6.4].

In the second approach, Eq. [4.6.4] is usually recommended over Eq. [4.6.3] in
the presence of conservative forces, as it makes use of the potential energy. On the
other hand, computation of dr;/dqy or dri/dg, (i = 1,2,...,N; k= 1,2,...,n)1n
Eq. [4.6.3] can be done in a systematic fashion and tabulated, thereby mechanizing
the derivation of the equilibrium equations.

Next, consider the principle of virtual work in terms of constrained generalized
coordinates. To this end, write the constraint equations in Pfaffian form as

> ajpdqi+apdt=0  j=12...,m [4.6.5]
k=1

Now write the variation of the generalized coordinates as

> apdgr =0 [4.6.6]
k=1
We add this relation to the principle of virtual work via the Lagrange multipliers
A; (j = 1.2,..., m), resulting in the expression for the augmented virtual work as
. i Al n M fl
oW = oW _Z;'lj (zaﬁfiqk) = ZQ;;EQ;; - Zﬁ.} (Zﬂ-”: 3:}';_-) = ()
=1 \k=1 k=1 =1  \k=1
[4.6.7]

Rearranging this equation as

8ﬁ" - Qk = .r’tjﬂj'.;. Eqk =0 [4.6.8]
T :

1 f=1

and by selecting the Lagrange multipliers such that the coefficients of dg; vanish
individually, we write the equilibrium equations as

A
Oy = > Ajajp  k=12....n [4.6.9]
i=1

in the presence of conservative forces, we introduce Eq. [4.6.4] to this equation,
which leads to

._-w+ Z,
L

Find the equilibrium position of the two links in Fig. 4.17. The springs are unstretched when | Example
both rods are horizontal. Both springs deflect only vertically. 4.8
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Figure 4.17

Because this problem involves two interconnected bodies and it is conservative, it 1s prefer-
able to use potential energy to find the equilibrium position. Noting that the spring deflections
are L sin @, and L sin & + L1 sin #5, and taking as the datum position the horizontal position
of both links, the potential energy is

2 L
V = *‘Hhﬁ% s + %kl(L| s6,)° —-m;g(Llsﬂi = o {59-})4‘ %kz{Llﬁﬂl + Lo SHE}E
[a]
The equilibrium positions are found from
dV A%
2 = l=9p b
af v dfl, [b]

and, taking the partial derivatives of V, we obtain

% —%mlngcm + kiLis@ich — mgLychy + ka(Lys8) + Lasfi)Lich) [c]
J

aV 1

.-:i'_ﬁl —Emgngﬂﬂz‘Fklleﬂﬂl +L1532)L2C31

Il

We introduce Egs. [¢] into Egs. [b]. Because cos 8 and cos #; are common to the first
and second of Egs. [¢], respectively, we eliminate them from Egs. [¢] and obtain

. _ 1
(ki + ka)L186) + kol Las@s = E-’”IHLJ + magl [d]

krl1L,s0y + REL% sty = %mEng

Note that by eliminating cos ¢, and cos 6, from the formulation, we are concluding that
cosf; = 0 and cosf); = 0 represent equilibrium positions themselves. This basically is the
vertical position of the links. At equilibrium either both links can be vertical, or one can. If
link 1 is vertical, then the equilibrium position for link 2 is found by solving the second of
Egs. [d]. and vice versa. To find the equilibrium positions where neither link is vertical, we
solve Egs. [d] simultaneously. To this end, we express Eqgs. [d] in matrix form by
1
(ki + k)L?  kaLyL; [sin aj] _ | g™gLy + maglLi (o]

kgL 1 L; .l.'g L% 81n 6, 1

§m13L1
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which can be written as [K|{g} = {Q}, and whose solution is {g} = [K] YQ}. The solution
can be shown to be

sinfl; = Ekfh (1 + ma) [f]

8
2ka L

sin i

(my + ma) +

3k 1 2

An interesting case arises when k; is set to zero, or when there is no spring attached to the
middle link. In this case, det| K] = 0, which implies that one cannot solve for the equilibrium
position by inverting Eq. [e]. The double link can assume an infinite number of equilibrium
positions.
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D’Alembert’s principle extends the principle of virtual work from the static to the
dynamic case. Consider the system of N particles discussed in the previous sec-

tions. If the system is not at rest, we can write Newton’s second law for the ith par-
ticle as ,

d
R, = ma; = Ep; i=12..., N [4.7.1]

where p; = mv; is the linear momentum of the ith particle and R; is the resultant
of all forces acting on the ith particle. As in the static case, we split the resultant R;
into the sum of the externally applied and constraint forces as

R; = Fy+F; [4.7.2]
Introducing Eq. [4.7.2] into Eq. [4.7.1], we obtain
F, + F: —-p; =0 [4.7.3]

This equation is known as the dynamic equilibrium relation, where the neg-
ative of the rate of change of linear momentum, —p; = —m;a;, is treated as a
force, referred to as the inertia force, that provides equilibrium. We can now treat
the dynamic system as if it is a static system and invoke the principle of virtual
work. Equation [4.7.3] is sometimes referred to as D’Alembert’s principle. We

proceed with the dot product of Eq. [4.7.3] and the variation in the displacement,
and write

(F; + F: — ma;)*or; = 0 [4.7.4]
Summing over all the particles gives

N
Z(Ff + F; — ma;) +dr; = 0 [4.7.5]
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Recalling from Section 4.4 that work done by the constraint forces over virtual dis-
placements 1s zero, or

e
> Fjedri =0 [4.7.6]

=1

and subtracting Eq. [4.7.6] from Eq. [4.7.5], we arrive at
N“\
O (Fi — mia;)+8r; = 0 [4.7.7]
=1

This we call the generalized principle of D'Alembert, or D’Alembert's principle. We
observe immediately that the principle of virtual work, given in Eq. [4.6.1], becomes
a special case of D’ Alembert’s principle.

D’ Alembert’s principle is a fundamental principle that provides a complete for-
mulation of all of the problems of mechanics. Hamilton’s principle and Lagrange’s
equations are all derived from D’ Alembert’s principle, as will be shown in the next
sections. The advantage of using D’ Alembert’s principle over a Newtonian approach
is that constraint forces and interacting forces between particles are eliminated from
the formulation. This advantage becomes more pronounced for systems with several
degrees of tfreedom.

We next extend D’ Alembert’s principle to rigid bodies. We consider here plane
motion only (the general three-dimensional case will be derived in Chapter 8). We
treat a rigid body as a collection of particles, so that in Eq. [4.7.7], N approaches
infinity. Define the angular velocity of the rigid body as w = 0. Also, we express
the position, velocity, and acceleration in terms of the center of mass motion as

r; = Ig + P Vi = Vg + @ X p;
4 = 4 T X pi'_tﬂ:{[];' 1 = 1,2,...,N [4.7.8]

where @ = ék, o = HK. so that the variation of r; can be written as
3]?'5 = BI‘G + 860k X i [4.7.9]

and we recognize that 88 = 66 k. Introducing Eqgs. [4.7.8] and [4.7.9] into D’ Alembert’s
principle, we obtain

N
S — miag — mia X pi + miw’py)* (Srg + 80k X p)) =0 [4.7.10]

i=1

Now, consider that the number of particles approaches infinity. The summation
is replaced by integration, and m;, p;, and ¥; are replaced by dm, p, and dF, respec-
tively. Evaluating the individual terms and using the definitions of center of mass
and mass moment of inertia, we obtain

JdF'SI‘G = F'Sl‘f; [dF'(ISHk A p) = MG o J.dmﬂg'ar(; = ma.;_;-ﬁr.;;

Jdm(ﬁk X p)e(60k X p) = éﬁﬂj pldm = 10660 [4.7.11]
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where m is the total mass, F is the resultant of all forces, /5 is the centroidal mass
moment of inertia, and Mg is the sum of moments about the center of mass. All other
remaining terms in Eq. [4.7.10] are zero. It follows that D’ Alembert’s principle for
a rigid body in plane motion is

(F — mag)dre + (Mg — 1:8)88 = 0 [4.7.12]

For a system of N rigid bodies in plane motion, D’ Alembert’s principle becomes

N
> [(F; — mag,)* 8rg, + (Mg, — 1,6;)86;] = 0 [4.7.13]

=1

where the subscript i now denotes the ith rigid body.

Up until the second half of the 20th century, the property of D’Alembert’s
principle being a vector relationship was usually viewed as a disadvantage, and
D’Alembert’s principle was primarily considered as a tool to obtain Hamilton's
principle and Lagrange’s equations. Equations [4.7.7] or [4.7.13] were rarely used
m the form given here. The need to deal with complex multibody problems and
the availability of digital computers has led scientists and engineers to take another
look at D’ Alembert’s principle as a primary method of solution. For example, if we
mtroduce Eq. [4.4.1b] into Eq. [4.7.7], we obtain

[4.7.14]

‘When we have a set of independent generalized coordinates, the coefficients of d¢;
must vanish independently, with the result

SE-ma)e ol =0 k=12....n [4.7.15]

Extending this to the case of N rigid bodies in plane motion, we obtain

N

J s
> [(F,— — miag)* 29 4+ (Mg, — 15,6)
i=1 4

7,
g

=0 [4.7.16]

Equations [4.7.15] and [4.7.16] represent direct use of D’ Alembert’s principle
0 derive equations of motion.

Consider a bead of mass m free to slide on a nng (hoop) of radius R, as shown in Fig. 4.18. l Example
The ring is rotating with the constant angular velocity {}. Find the equation of motion using 4.9

2" Alembert’s principle.

Solution

Secause we are dealing with a single particle, we drop the subscript in Eq. [4.7.7] and write
u as

(F — ma)+ér =0 [a]
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by
i
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Figure 4.18 Beadona Figure 4.19  Freebody

rotating ring diagram

The free-body diagram is given in Fig. 4.19. The b, b,b; axes are attached to the hoop. The
generalized coordinate is selected as #. We first derive an expression for the acceleration. The
moving frame is attached to the ring. The position vector is

r = Rsinfb: — Rcosf bs [b]

50 1ts variation 1s

or = Rcos#66b; + Rsin@ 66 bs [c]

Because the motion of the relative frame, that is, of the hoop, is treated as a known
quantity, its variation is zero. Hence, it is possible to calculate the variation of r in the relative
frame. To see this better, write the velocity of the bead as

V=V +w¥Xr= RO cos 6b, + R sin #bs + {lb; X (Rsinflb, — Rcosfbs) [d]
= RO cos b, + Re sinfbs — R() sin b,

Since () is a constant and it is not the derivative of a motion variable, it cannot be expressed
in terms of a variation. Consequently, the third term on the rnight side of Eq. [d] does not
contribute to the virtual displacement.

Because the angular velocity is constant, the expression for the acceleration has the form
8 =8 +0X®Xr+20 X Vy = Rcosfb, + Rf sinbs — RE” sin b, + RO cos Obs
+ Qb3 X (0b; X (Rsinfb; — Rcosfbs) + 2Q0b; X (RA cos 6b, + RA sinfbs)
a = —2ROQ cosOb, + (—Rsin8(6% + Q%) + Rb cos @b, + (R§? cos @ + RBsin®)b;  [el

The only force acting on the system which is not a constraint force is gravity, and it has the
form F = —mgbs.
Substituting Eqs. [c] and [e] into the generalized principle of D’ Alembert yields

(F — ma)=*dér = [—mgbs + m(R sin (8% + 0?) — Ré cos )b,

— m(R6* cos 6 + RB sinf)b; — 2mROQ cos by ]
«(Rcos@86b, + Rsin080bs) = 0 [f]
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After evaluating the dot product and setting the coefficient of 6@ equal to zero, we obtain the
equation of motion as

§+sinﬂ(%—ﬂ3cnsﬂ)=ﬂ [:1)
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Let us compare the procedure we used in this example with a Newtonian ap-
proach. From the free-body diagram, there are two normal (reaction) forces. N, and
N,. After applying Newton's second law, we get three equations and we need to elim-
inate the reactions. It 1s obvious that using D’ Alembert’s principle is simpler. The
difference becomes more pronounced where there are several degrees of freedom.

4.8 HAMILTON’S PRINCIPLES

From D’ Alembert’s principle we develop the scalar variational principles that pro-

vide a complete formulation of the problems of mechanics. These principles were

stated for the most general case of motion by Sir William Rowan Hamilton.
Consider a system of N particles and D’ Alembert’s principle

N
Z(m;f‘,' — F;)=or; = 0 [4.8.1]
1=1

We denote by 8W = > F; » dr; the virtual work of all the impressed forces. To
manipulate the first term in the above equation, consider the expression

%(l‘; *Ar;) = F;*Or; + Ir;*Or; i=12...,.N [4.8.2]

The second term on the right in Eq. [4.8.2] can be recognized as

o o B = 20T [4.8.3]
2
The kinetic energy of the ith particle is
Tf - %mm 'i‘; [4-5-41
so that the variation of the kinetic energy of the ith particle becomes
l o . ;
BTj = Ei‘ﬂj ﬁ(l‘f - l','} = m;r;* 31‘;‘ [4.8.5]
and we can express Eq. [4.8.2] as

fﬂj%(i‘j . 5[‘;’) — ﬂ'!jf'j . 5[’5 -+ H‘Ijl-'j » ESI'I = m;i‘.- . EI';‘ + ﬁT; [-II.H.ﬁ]
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The variation in the total kinetic energy of the system i1s
N

N
1 o
5T = Z ST; = Z. Em;ﬁ{rf °T;) [4.8.7]
=

i=1

Using Eq. [4.8.6], we express D’ Alembert’s principle as
N N d
.-l. —_— = i j: P  — — P m— : i . —_— 4. P
él[rﬂ,r, Fi)+*6r; =0 oT + ié] m; dr{r, or;) — oW [4.8.8]

so that we have an expression for the variation of the kinetic and potential energies

N
8T + W = Zm,-%(i:‘,- .+ 6r;) [4.8.9]
P=1

Next, we integrate the right side of Eq. [4.8.9] over two points in time, say, f; and
1>, thus

m I N

|

]
J (8T + W) dt
f

1

d .
] H’Ifa(l’j '5]‘;‘}df

-

§ [ (=

. N N
> mid(tie8r) = > myt;+ 8
i=1

g |

Il

[4.8.10]

f2
fl

The term m;¥; is recognized as the partial derivative of T; with respect to 1, so that
we may write
I

¥ Iz N aT;
> mitedr| = > b [4.8.11]
i=1 h

oT;

I_—".l fl

which, when introduced back into Eq. [4.8.10], yields

N 2

{2 .
J (6T + oW)dt — z jT' *Or;
f

= () [4.8.12]

1 j=1 [

f

This equation is known as Hamilton's principle (or law) of varying action. One
can put this principle into more general form, by expressing it in terms of generalized
coordinates alone. Introducing Eq. [4.4.7] into Eq. [4.8.11], we obtain

N oT; . | ¥ af. & abe. [F &8
;a'r,-'a"f:, = 255 2 a0 _Zmﬁq*

i=1 k=1 79k by k=1

[4.8.13]

Introducing Eq. [4.8.13] into Eq. [4.8.12] we write Hamilton’s principle of varying
action as

2

" ", T
J BT +8W)dt — > —8qi| =0 [4.8.14]
I

| k=1 ﬂﬁ?k

I

Note that the derivation above does not put any restrictions on the time instances 7
and #5.
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A special case of Hamilton’s principle of varying action is obtained when we
consider the variation of r; as time is held fixed. We reexamine Fig. 4.12, which is
analogous to Fig. B1 in Appendix B. The varied path can take any value within the set
of admissible displacements of the system, and it coincides with the true path at the
end points. It follows that the variation of the displacement ér; and of the generalized
coordinates have values of zero att = 1) and 1 = 15, provided r is specified at ¢; and
f>. Of interest is the case whenr; (i = 1,2,..., N) are specified, which eliminates
the integrated term in Hamilton’s principle of varying action, resulting in

Iz
J (0T + W) dr = 0 [4.8.15]
t

1

This equation i1s known as the extended Hamilton's principle. Writing the virtual
work as 6 W = 6W,,, — 8V, one can express the extended Hamilton’s principle also
as

Iy
J (6T — 8V +oW,.)dt = () [4.8.16]
[

1

Even though we derived it here for a system of particles, the extended Hamil-
ton’'s principle is valid both for particles and for rigid or elastic bodies. It is, again,
a fundamental principle of mechanics from which the motion of all bodies can be
described. In this sense, the extended Hamilton’s principle 1s not exactly a denved
principle. Rather, it 1s more like a law of nature, in the same way that Newton'’s sec-
ond law 1s a law of nature. Further, only scalar quantities like work and energy are
needed. No acceleration terms need to be calculated to invoke this principle.

Introduce the Lagrangian L such that L = T — V. For conservative systems,
8W = —oV, and we can write

L)
[ oLdr =0 [4.8.17]
t

and Eq. [4.8.17] 1s referred to as Hamilton's principle. This principle was first stated
by Lagrange and originally called Principle of least action. When the system is holo-
momic, one can interchange the integration and variation operations, which yields

Iz
SJ Ldt=10 [4.8.18]
t

Hamilton’s principle for a holonomic system basically states that among all the
paths that a system can take, the actual path followed renders the definite integral
I = [,* Ldt stationary. This integral is also known as the action integral.

The implementation of the extended Hamilton’s principle for finding the equa-
tions of motion requires the evaluation of the variations of the kinetic and potential
energies. The procedure can become tedious, primarily because of the large number
of integrations by parts that one must perform to relate the variations of general-
ized velocities to the variations of the generalized coordinates. A simpler and more
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general procedure for deriving the equations of motion for systems with a finite num-
ber of degrees of freedom is by means of Lagrange’s equations, as we will see in the
next section.

The direct use of the extended Hamilton’s principle is effective when deriving
the equations of motion of deformable bodies, such as for the vibrations of beams,
plates, and shells. In such problems, the extended Hamilton’s principle yields the
equations of motion in the form of partial differential equations with accompany-
ing boundary conditions. We will investigate the dynamics of deformable bodies in
Chapter 11. Hamilton’s principle is also used in transformation theory and in optimal
control theory.

One may wonder why we list two major principles in this section that encompass
nonconservative forces when the first, Hamilton’s law of varying action, is length-
ier and has the appearance of being redundant when compared with the extended
principle. The difference between the two principles is in how they treat the time
mmstances f; and 1.

If we view 1} and 7, as arbitrary time instances, we obtain the extended Hamil-
ton’s principle from Hamilton’s law of varying action and the two principles become
the same. But if we view f; as a point at which we know the values of the gener-
alized coordinates, then we can make use of Eq. [4.8.14] to find the values of the
generalized coordinates at time f7. To do this we do not need to derive any equations
of motion, just the variation of the Lagrangian and the virtual work. This approach
comes in handy in numerical integration, as f, can be taken as #; + A, in which A is
a small time increment.

Example
4.10

©btain the equation of motion of the bead problem in Example 4.9 using the extended Hamil-

ton’s principle.
Solution
To find the kinetic energy, we need the velocity of the bead. From Example 4.9 we have

r = Rsinflb, — Rcosfb; [a]
v = —RQ sin#b; + RA cos 6b, + RA sin Obs [b]

The Kinetic energy is
T = %mif-v = %m[{ﬂR sin@)* + (RO cosA)* + (RO sin 6)*] = "‘f 0?sin” 0 + ”’T‘qzéi
(<]

Using the position of the bead at the bottom of the ring (6 = 0) as the datum, the potential
energy becomes

V = mgR(1 — cosf) [d]
s0 that the Lagrangian has the form

mR? .

i3 62 — mgR(1 — cos 0) [e]

_ - i v L
L=T-=V —2ﬂ51n9+ 5
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The vanation of the Lagrangian is

3L=%53+£

1 = wmpt |l OZannsnen — & o 24 8/
T g{}ﬁﬂ mR [ﬂ sin @ cos 6 Rsm&]ﬁﬁ+mRﬂﬁﬂ [f]

The second term in this equation is in terms of 86. To invoke the extended Hamilton

sninciple, we have to express all the terms in terms of 66. To accomplish this, we integrate
this second term by parts and write

e
i

L 2. o .
J’ a6 dt = J 8 —(of)dr = 6860
: dit

| I

g
J " {80 dt [g]

1 1

The integrated term on the right side of Eq. [g] vanishes by virtue of the definition
of the variation operation. (The values of the variation at the beginning and end of the path
are zero.) The second term, when used with Eq. [f] and the Extended Hamilton’s Principle,

yviclds
f2 .
J ’—-mRzﬁ‘ + mR? (ﬁz sin & cos B — % sin Hﬂ ol dt =0 [h]
i .
In order for the equality to hold, the integrand must vanish at all times. Because 68 is

arbitrary, for the integrand to be zero the coefficient of 86 must be identically zero. Thus we
m=cognize as the equation of motion

t‘:j+5'.inﬂ(% —ﬂlr:-usﬂ)= 0 [i]
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Let us review the operations we carried out. After obtaining the kinetic and po-
w=ntial energies and taking the partial derivatives, we performed an integration by

parts on the term 6 56. We could have done the integration by parts on the general
sxpression % 00 rather than the corresponding specific term in this problem, 6 66.
The question then arises as to whether, manipulating the extended Hamilton's princi-

ple, one can perform the integrations by part in advance and develop a general form
for the equations of motion. This is the question we will explore in the next section.

8.9 LAGRANGE’S EQUATIONS

From Hamilton’s principle, we derive Lagrange’s equations, which present them-
selves as a convenient way of deriving the equations of motion. The extended Hamil-
ton’s principle can be expressed as

5] !

Iz 2
J (6T — 8V + 6W,.)dt = J. OWy,dt =0 [4.9.1]
t

1 f

3Ldr+J

f

The Lagrangian L can be written in terms of generalized coordinates g; and
generalized velocities g, (kK = 1,2, ..., n)asL = L(q1, q2,--., 4n 41, G2, - - -, Gn, 1)
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The variation of L is

"5 (AL i

and, using Eqs. [4.5.10] and [4.5.19], the variation of the nonconservative work 1s
written in terms of the generalized forces as

n
oWy = Z Qh:-:'aq.i: [4.9.3]
k=1

Making use of the property that the variation and differentiation (with regard
to time) operations can be interchanged, we integrate by parts the second term in

Eq. [4.9.2] and obtain
2 aL . 2 gL d i e )
J —Stj'kdf = J ~———(3Qk}di“ = ‘_ﬁfi',i; _“[ E(ﬂ— ﬁqkdf
t Bglt)) b qk
[4.9.4]

1 ﬂqk f {?fj'.t_- dt "5"?1:

The integrated term requires evaluation of d¢g, (kK = 1,2, ...,n) at the beginning
and the end of the time intervals. By the definition of the variation, the varied path
vanishes at the end points, thus 6q,(t;) = 8q,(t2) = 0 for all values of k. Consider-
ing this, and introducing Eqs. [4.9.2]-[4.9.4] into the extended Hamilton’s principle,
we obtain

2 P d [dL dL
oT — oV + oW, = ——|=— |+ =— + Quuc | Ogrdt = (
L ( 4 ensht L ;[ dt ("?f{k) Iqy & ] =

[4.9.5]

For the integral over time to vanish at all times, the integrand must be identically
equal to zero, which can be expressed as

B d (a_L) JL w
e e [ Q ne aq = () [4.’,&]
;{ dit\oge) " aqr " T

It should be noted that this equation can be directly obtained from D’ Alembert’s
principle, without using Hamilton’s principle. Because of this, Eq. [4.9.6] is some-
times referred to as Lagrange's form of D’Alembert’s principle.

Consider now a set of independent generalized coordinates. It follows that the
only way Eq. [4.9.6] can be equal to zero is if the coefficients of ¢, vanish individ-
ually for all values of the index k. Setting the coefficients equal to zero, we obtain
Lagrange's equations of motion

d (oL dL
— == = . k=172,... 9.
dI (f?gk—) ant F 4= l'”’ [49?]
Equation [4.9.7] 1s the most general form of Lagrange’s equations. They can also
be expressed in terms of the kinetic and potential energies. Noting that the potential
energy is not a function of the generalized velocities (except for electromagnetic
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systems), we write Eq. [4.9.7] as

d {dT dT aV
7 ((5'{“;) 7 + ey = i k D RO [4.9.8]
This form of Lagrange’s equations is preferred by many, as it reduces the possibility
of making a sign error when evaluating the partial derivatives. It also is similar to
the format Lagrange first presented these equations in 1788. Under certain circum-
stances it 18 more convenient to write Lagrange’s equations in terms of the kinetic
energy alone, in the form of

d (dL aT
77 (‘m)‘_ m = Oy [4.9.9]
where the values of Oy contain contributions from the conservative as well as non-
conservative forces. The principle of virtual work given by Eq. [4.6.4], is a special
case of Lagrange’s equations. In the static case, the first two terms in Eq. [4.9.8]
vanish.

For a holonomic conservative system, one can use Eq. [4.8.15] directly in con-
Junction with the Euler-Lagrange equation in Appendix B to derive Lagrange’s equa-
tions. The order of variation and integration can be exchanged, and one seeks the
stationary values of the integral ] = Jf L d1, leading to

d {dL dL
T P | T e—" '[]' .9.10
dt (ﬂfi‘k) dqy - )
Lagrange’s equations can conveniently be expressed in column vector for-

mat. Introducing the n-dimensional generalized coordinate and generalized force
vectors

{q} o I.'-?I q2 < v qHJT {an} » [Q]m.‘ le: R anc]T [4.9.11]
we can write Lagrange’s equations as
d [ dL al T
. T e, e 4.’-'!
dr (a{q}) g Cnel PR

Let us now compare the steps involved in obtaining the equations of motion us-
mg Lagrange’s equations and using the Newtonian approach. When using Newton’s
second law, we

1. Isolate the different bodies involved.
2. Select a coordinate system and draw free-body diagrams.

3. Relate the sum of forces and sum of moments to the translational and angular
accelerations.

4. Use kinematics to express the accelerations in terms of translational and angular
parameters.

5. Eliminate the constraint and reaction forces and derive the equations of motion.
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When using the Lagrangian approach, we
1. Determine the number of degrees of freedom and select a set of independent
generalized coordinates. The free-body diagram is a useful tool for this.

2. Use the kinematical relations to find the velocities and virtual displacements
mvolved.

Identify the forces that are conservative and those that are not.
Write the kinetic and potential energies, as well as the virtual work.

L. e

Apply Lagrange’s equations.

There are two distinct differences between the two approaches. The first dif-
ference is in the order of the steps involved: In the Newtonian approach, one first
writes the force and moment balances for all bodies separately and then uses kine-
matical relations and the constraint forces to reduce the number of equations. In the
Lagrangian approach, one considers the constraints and kinematics of the problem
first. Then, the equations of motion are written, one for each degree of freedom.
The bulk of the work involved in Lagrangian mechanics is to find a proper set of
generalized coordinates and to express the kinematics. Once this is done, the rest is
straightforward.

The second difference is that the Lagrangian approach uses velocities and scalar
quantities, whereas the Newtonian approach uses accelerations and vector quantities.
Dealing with velocities involves considerably less algebra than dealing with accel-
erations.

[t may appear, from the above discussion, that Lagrange’s equations should be
preferable to the Newtonian approach at all times; but this is not so. By eliminating
the constraint forces from the formulation, the Lagrangian approach does not cal-
culate the amplitudes of these forces. While this may be acceptable for classroom
examples, it certainly is not in many real-life applications, where one must know
the amplitudes of the reaction and other contact forces acting on a body. Further-
more, for certain geometries a Newtonian approach is more suitable. The best way
to determine which approach is most suited to one’s needs is by gaining experience
in solving mechanics problems. In many cases, looking at a problem from both a
Lagrangian and Newtonian point of view increases the physical insight and makes
it easier to understand the characteristics of the system.

We should add here that the historical development of analytical mechanics did
not follow the sequence in which it is presented in this chapter. Lagrange’s equations
were derived before the extended Hamilton's principle, and they were derived for
conservative systems only. It was Hamilton, born after Lagrange, who put together
the developments in variational mechanics and Lagrange’s equations to develop a
general scalar principle from which all the equations of motion can be derived.

Example
4.11

For the system in Fig. 4.20, find the equations of motion using Lagrange's equations. Assume
that the spring and dashpot deflect only horizontally and that the force F is always applied
horizontally.
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Figure 4.20 Figure 4.21 Free body diagram
Solution

This 15 a two degree of freedom system, and we select the generalized coordinates as the
displacement of the mass x and rotation of the bar 6. The free-body diagram of the entire
system is shown in Fig. 4.21. The kinetic energy of the cart is T¢yy = 3 M x°. The kinetic
energy of the bar 1s due to the translation and rotation and can be expressed as
T - I I éz 1 2 2

bar: = 160" + sm(v; +0y) [a]
where I 1s the mass moment of inertia about the center of mass, /i = mb*/12, and v, and
v, are the velocities of the center of mass of the bar, found as

U, = i.ﬁ:a = i(x-l— Esiﬂﬂ)= £+Eﬂcnsﬂ

dt dt 2 2
d 2 %
Uy = %}’a = E(—gcnsﬂ) = gﬂ sin ¢ [b]

The total kinetic energy is

|

1 s b - > (b, £
= *2" e 2 r " — s 1
T ZMI + 24mb2ﬂ‘ + 2m[(x+ Eﬂcnsﬂ) + (Zﬂ'smﬂ)]
= %(M + m)x® + %mbéi cos B + %mbzé: [c]

The potential energy is due to the deflection of the spring and the vertical movement of
the center of mass of the bar, written

_ . b
V = Ekx mgzcnsﬁ [d]

The virtual work of the nonconservative forces is due to the external force F and the
dashpot, so

oW, = For—cv,dxg = F6(x + bsin®) — ¢

X+ gﬂcusﬂ](ﬁx + gcnsﬂﬁﬂ)

b20 cos> 0 56
[e]

= Fdx+ Fbcos0dl —cxdx — %cbécnsﬂﬁx — %E‘biﬂﬂﬁﬂﬁﬂ — %L‘
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from which we recognize the generalized forces as
| .
0, =F—-cx— %chcusﬂ Oy = Fbcosfl — Ecbzﬂc{}sﬂﬂ- %cbicns& [f]
Taking the appropriate derivatives, we obtain
% = (M 4+ m).i:-lj %mbé cos 3%— == %mb.i: cosfl + ;—mbzé
7 av 5 e S A | ;
—% = s = kx - i ﬁmbﬂi sin ¢ 50 Emgbsmﬂ (gl
Substituting the above values into Lagrange’s equations we obtain the equations of mo-
tion as
s ] " ] s I 4 I 1
(M + m)X + Embﬁcusﬂ = Embﬂ‘ sinfl + ¢x + Ecbﬂcus& +kx =F
1 oy l L ]. - ]. 2 Fd ) 1 .
gmsﬁe + smbicosf + 5cbicost + b6 cos 6 + 5mgbsin = Fbcos® [h]
Example Figure 4,22 shows a collar of mass m sliding outside a long, slender rod of mass M and length
4.12 L. The coefficient of friction between the rod and collar is p. There is a force F acting at the

tip of the rod. Find the equations of motion.

Solution

We will solve this problem as a two degree of freedom unconstrained system. Polar coordi-
nates are suitable as generalized coordinates. The free-body diagrams are given in Fig. 4.23.
There are four external forces: two gravity forces, which we will account for in the potential
energy, the friction force, and the force at the tip.

-
e,

\

Figure 4.22  Collar slid- Figure 4.23  Free-body diagram
ing on a rod
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The position and velocity of the collar are
r = re, Vv =re + réeﬂ [a]

The virtual work associated with the two external forces can be written as

oW = Fedrp + Ffedr k]
in which
F = Fcosipe, + Fsinyreg F; = —Fysign(r)e, 6r = dre, + rdbe; Orp = L 30ey
[<]
s0 that the virtual work becomes
oW = —Ffsign(f}ErJrFLsim,baﬂ = O, 0r+ Oy 66 [d]
with @, = —Fysign(r) and Qp = FL sins as the generalized forces due to the nonconser-
vative forces.
The kinetic energy is
Tis Toat Todite = éMLEéE + %m{fz + 126%) [e]
and the potential energy is
L
V = —mgrcosf — M:gf cos @ [f]

Application of Lagrange’s equations yields the equations of motion as

mit — mr® — mgcosf = —Fysign(r) (gl

(%MLE + mrz)é + 2mrif + (mr + %ML)gﬁinﬁ = FLsiny [h]

The friction force is related to the normal force N between the collar and rod by F; =
uN. However, at this point we do not know what the normal force is. To find the normal force,
we need to go to a Newtonian analysis. Reconsidering the free-body diagram and summing
forces along the transverse direction, we obtain

> Fp = m(réi + 2i0) = N — mgsinf [i
from which we obtain the magnitude of the normal force as
N = m(rf + 2/ + gsin @) il

We can eliminate the normal force from the equations of motion by introducing Eq. [j]
mio Eq. [g]. Note that the friction force is always a positive quantity, as it is proportional to
the magnitude of the normal force. The expression involving N in Eq. [j] can lead to both
positive and negative values. Therefore, we express the friction force as

Fr = ulN| = wm|ré + 2760 + gsin6)| [k]

and use Eq. [k] in the equations of motion.
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The preceding example illustrates the problems that one encounters when deal-
ing with problems involving friction. As stated earlier, friction is not a constraint
force, but its magnitude depends on a constraint force. If we select a set of uncon-
strained generalized coordinates to describe the motion, as we did in this example,
we cannot obtain the magnitudes of the friction force without an additional Newto-
nian analysis. In the next section, we will see an analytical approach that calculates
magnitudes of constraint forces.

4.10 LAGRANGE’S EQUATIONS FOR CONSTRAINED SYSTEMS

The formulation of Lagrange’s equations in the previous section was for uncon-
strained systems and for constrained systems where the generalized coordinates are
selected such that all constraints are accounted for and the surplus coordinates elim-
inated. This approach is not feasible under a number of circumstances:

1. When the constraints are nonholonomic. Because nonholonomic constraints in-
volve velocity expressions that cannot be integrated to displacement expres-
sions, one cannot find a set of unconstrained generalized coordinates.

2. 'When the constraints are holonomic and one cannot eliminate the surplus coor-
dinates easily, for one of the following reasons:
a. The constraint equation is complicated.
b. Finding the transformations that lead to unconstrained equations makes the
equations of motion very complicated.
¢. Some of the forces acting on the system are functions of constraint forces.

3. When the constraints are holonomic but one does not want to eliminate the sur-
plus coordinates from the formulation, usually because of the need to know the
amplitudes of the reaction forces.

Consider a system originally of n degrees of freedom, to which m constraints
are applied. For the most general case, we express the constraints in velocity form
aa

fl
D apge+ap=0 j=12...,m [4.10.1]
k=1
whose variation is
H
> apbdgr =0 [4.10.2]
k=1

Multiplying Eq. [4.10.2] by the Lagrange multipliers A; (j = 1,2,..., m) and in-
troducing these constraints to the extended Hamilton’s principle, we obtain

f om0

f2 I2 x
J 8L dt +J awmmdr—J > D Ajajdqrdt =0  [4.10.3]
' t

I fe=lk=]

When the constraints are holonomic, the coordinates gy, g, ..., g, no longer
constitute a set of independent generalized coordinates. They are now constrained




8.10 LAGRANGE’S EQUATIONS FOR CONSTRAINED SYSTEMS

generalized coordinates. When the constraints are nonholonomic, only the gener-
alized velocities are constrained, while the generalized coordinates are still inde-
pendent. In both cases, the variations of the generalized coordinates are constrained.
Following the same procedure as when deriving Lagrange’s equations for the uncon-
strained case, we take the appropriate partial derivatives and perform the integrations
by parts to obtain

L2 d [dL ) dL
- — | — + Qe — Aiai | 6gpdt = 0 [4.10.4]
EL dt (ﬂ-?k dqy ; THIE R

—

As in the static case, we select the Lagrange multipliers A; such that the coeffi-
cientsof dq, (k = 1, 2, ..., n)vanish, which leads to a modified form of Lagrange’s
equations, written

d [ JL =
— A =G EEL T 4.10.5
dt (-:?fik) aqy ??; 21 = e e ]

where A ja;; are the generalized constraint forces. They have the same units as the
generalized forces (which do not necessarily have the units of force). In column
vector notation, Eq. [4.10.5] is expressed as

dt\olg}) olql

in which [a] is a matrix of order m X n whose entries are ¢ and {A} is a column
vector of order m that contains the Lagrange multipliers.

After obtaining the equations of motion, one has two courses of action for finding
a solution. The first is to eliminate the Lagrange multipliers from the equations of
motion and obtain a set of n — m unconstrained equations. One accomplishes this by
algebraic manipulation of the equations of motion. Many times, such an approach
results in complicated expressions.

The second course of action is to take the n equations of motion in Eq. [4.10.5]
and the m constraint relations in Eq. [4.10.1] and then to solve them together for the
n+m = p+2munknowns g, gz, ..., qn, A, Aa, ..., Am. The resulting n + m equa-
tions are not a set of differential equations, as there is no derivative of the Lagrange

multipliers involved. Such equations are known as differential-algebraic equations,
Their analysis requires a different treatment than that for differential equations.

When the constraints are holonomic and expressed in the configuration form

[4.3.2], one can add them to the extended Hamilton’s principle by

i(ﬂ.’) o2 +{A¥ [a] = {Qnc} [4.10.6]

fs

fa 2]
[ 5Ldr+[ aw,wd:—f Zﬁjﬁcj{ql,qg,...,qn):(} [4.10.7]
f !

1 I 1 j=1

and obtain the contribution of the constraint by replacing a;; in Eq. [4.10.5] with
#c;ldqy. Or, we can add them directly to the Lagrangian as

E = T —¥ _Zﬂjfj{‘?h gz e qn) [4.10.8]
j=1
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When the objective is to obtain the amplitude of a constraint force, an analyt-
ical approach that can be used is the constraint relaxation method. This method is
mathematically equivalent to the Lagrange multiplier approach. However, it is more
intuitive and it is particularly useful when dealing with holonomic constraints ex-
pressed in configuration form. Following is a description of the method.

We relax the constraint from the formulation and represent the effects of the
constraint by a constraint force. Then, we write the Lagrangian and virtual work. The
constraint force enters the formulation via the virtual work. We invoke Lagrange’s
equations and obtain the equations of motion. We next impose the constraint, which
enables us to calculate the magnitude of the constraint force.

Example
4.13

Consider Example 4.12, in which a collar of mass m is sliding on a rod of mass M and length
L. The coefficient of friction between the rod and collar is p. Obtain the equations of motion
using constrained generalized coordinates and find the value of the normal force N.

Solution

To describe this system in terms of constrained generalized coordinates, consider the rod and
the collar separately. We express the motion of the collar using polar coordinates, r and #.
as in Example 4.12. To express the motion of the rod, we introduce another angle, ¢, The
constraint equation 1s

g-—p= [a]

The kinetic and potential energy has the same form as in Example 4.12. We write them here
in terms of the constrained generalized coordinates as

I = %MLlcfiz + %m(r’l + 176%) V = —mgrcosf — Mg% cos ¢ [b]

The normal force N acts in the transverse direction and it contributes to the virtual work.
Considering that the velocity of the collar in the transverse direction is vy = rleg, we write
the virtual work expression as

-

SW = —Fysign(#)8r + FLsinyr 86 + Nr(o8 — dah) [c]
We obtain the Lagrange's equations as
Forr — mi — mrf* — mgcosf = —F; sign(r) [d]
For§ — mr 0 + 2mri® + mgrsin = Nr [e]
l-c50 1 ;
For ¢p — ﬁML'qb+ ngLs1n¢=—Nr+FLsinl,ir [f]

These equations have to be solved together with Eq. [a]. Equation [d] is the same as
Eq. [g] in BExample 4.12, and if we add Egs. [e] and [f] and use the constraint equation [a]
we eliminate the normal force and obtain Eq. [h] in Example 4.12. From Eq. [e]. we find the
normal force as

N = mrf + 2mi0 + mgcos 6 [g]

which is the same value obtained in Example 4.12. The friction force is given in Eq. [k] of
Example 4.12.
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The difference between the approach here and the approach in Example 4,12 is that here
we calculated the normal force directly from the Lagrange’s equations, while in Example 4.12
we conducted a force balance in addition to the Lagrange’s equations.
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€Consider the vehicle in Fig. 4.8. Given that the velocity of point A is along the line of sym-

metry of the vehicle, derive the equations of motion. Gravity acts perpendicular to the plane
of motion.

Solution

We denote the coordinates of the center of mass by X and Y and select the generalized coor-
dinates as X, Y, and . The kinetic energy of the vehicle is

. ) 1 ..
T = %m{.ﬁ’z + ¥%) + Eff;ﬂ" [a]

where m is the mass and /g is the centroidal mass moment of inertia. There is no potential
energy, and the virtual work expression involves the two forces Fr and Fp. We can find
the virtual work conveniently by calculating the velocities of points C and D. Defining a
coordinate system xy attached to the vehicle, we write the velocities of points G and A as

v = XTI+ ¥J = (Xcos8 + ¥sin6)i + (—Xsinf + ¥ cos 8)j [b]
Vi =vg+ 0k X —Li = (Xcos@ + ¥sin6)i + (—Xsin@ + Ycos@ — LO)j  [e]
The constraint is defined as
f=v*j=—Xsinf+ Ycos — L =0 [d]
thus the velocity of A reduces to
vi = (Xcos# + Ysin@)i [e]
and the vanation of the constraint becomes
of = sinf6X —cosf@dY +L oA =0 [f]
Hence, the velocities of C and D become
Vo = V4 + 0k X hj = (X cos@ + Vsin@ — hd)i [g]
Vo = Va + 0k X (—hj) = (Xcos@ + sin6 + ho)i [h]
The external forces are F = Fei, Fp = Fpi, so the virtual work expression becomes

SW = Feodre + Fpedrp + A8f
= (Fec+ Fp)cos@8X + (Fe + Fp)sin08Y + (Fp — Fo)h 66
+ A(BXsind —6Ycos 8 + L G0 Iil

The physical interpretation of the Lagrange multiplier is that it is the resultant of
all forces that keep vy along the x axis, and it acts in a direction perpendicular to this
axis. Introducing Eqgs. [a] and [i] into Lagrange’s equations, we obtain the equations of
motion as

Example
4.14
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mX = (Fe + Fp)cos @ + Asiné [il
mY = (Fe + Fp)sinf — Acos#@ [kl
I = (Fp — Fo)h + LA m

Note that while deriving the equations of motion we did not introduce Eq. [d] directly into
the expression for the kinetic energy, thus eliminating one of the generalized coordinates from
the outset. Had we done so, we would have eliminated the contribution due to the variation

of that coordinate and ended up with an incorrect representation. This procedure is crucial to
the treatment of nonholonomic constraints.

Even 1f we eliminated one of the generalized velocities and the Lagrange multiplier,
writing the equations of motion in terms of ¥ and € (or X and 6) would not give the most
meaningful description of the motion. A quantity critical to the understanding of the motion
1s the speed of point A. 1If the equations of motion can be expressed in terms of that speed, one

gets a clearer picture of the nature of the motion. One can introduce v, to Egs. [j1-[1] with a
substitution.

Indeed, 1f we multiply Eq. []] by cos # and Eq. [k] by sin @ and add the two we obtain
m(Xcosf + Ysinf) = Fe + Fp [m]

Recalling from Eq. [e] that vy = (X cos@ + ¥ sin @), differentiating this expression we
obtain

0y = Xcos@ + ¥sinf + (—X sinf + ¥ cos @) [n]
Introducing Eq. [d] to Eq. [n] we can write
Xcos® + ¥Ysinf = o4 — L6? [o]
so that Eq. [m] can be written as
m(iy — LO?) = Fe + Fp Ip]

which is recognized as the force balance along the x direction.
We next find an expression for the Lagrange multiplier A and introduce it to Eq. [e]. -
To this end, we multiply Eq. [j] with sinf and Eq. [k] by — cos f and add the two, with the

result

m(Xsinf — ¥Ycosf) = A [ql

We can introduce this relationship to Eq. [1], but a more meaningful expression can be gen-
erated if we consider Eq. [d] and differentiate it

X sin — Fcns&-l—é[ffcnsﬁ?+f’sinﬂ} = —Lf [=]
Considering Eq. [q], we express the Lagrange multiplier as
A= —mus8 — mL0 [s]
Introducing this equation into Eq. [1] we obtain
(I + mL*)8 + mLvs@ = (Fp — Feo)h [+]

which we recognize as the moment balance about point A. Equations [p] and [t] are the two
independent equations of motion of the vehicle.
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HOMEWORK EXERCISES
SECTION 4.3

The four-bar linkage in Fig. 4.24 is a single degree of freedom system. Show
that this is so by separating the mechanism into its three components and by
writing the constraint equations that relate the configurations of the links.

A bead slides up a spiral of constant radius R and height A, as shown in Fig. 4.25.
It takes the bead six full turns to reach the top. Express the characteristics of the
path of the bead as a constraint relation.

A particle slides inside a smooth paraboloid of revolution described by z = r?/b,
as shown in Fig. 4.26. Using cylindrical coordinates, find an expression for the
constraint force on the particle.

The radar tracking of a moving vehicle by another moving vehicle is a common
problem. Consider the two vehicles A and B in Fig. 4.27. The orientation of vehi-
cle A must always be toward vehicle B. Express the constraint relation between
the velocities and distance between the two vehicles and determine whether this
is a holonomic constraint or not.

Figure 4.24 Four-bar Figure 4.25
linkage
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Figure 4.26 Figure 4.27

5 Consider the double pendulum in Fig. 4.3. It is desired to have the velocity of
the tip of the pendulum point toward the pinned end O. Express this condition
as a constraint and determine whether the constraint is holonomic or not.

SECTION 4.4

6. Consider a particle moving along a path and the description of motion by path
variables. Express the force keeping the particle moving along the path in terms
of its components in the tangential, normal, and binormal directions and evaluate

the virtual work expression. Identify which of these forces are constraint forces
and verify Eq. [4.4.14].

7. Find the virtual displacement of point P in Fig. 4.28. The mass is suspended
from an arm which is attached to a rotating column. The pendulum swings in
the plane generated by the column and arm. -

T
|
-~

Figure 4.28
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Figure 4.29  Slidercrank mechanism Figure 4.30

8. Express the virtual displacement of the slider in the slider-crank mechanism
shown in Fig. 4.29 using (a) the relative velocity relations, and (b) the analytical
EXPressions.

9. A uniform solid cylinder of radius R rolls without slip on a horizontal plane
and an identical cylinder rolls without slip on it (Fig. 4.30). Find the virtual
displacements of the centers of the cylinders.

10. Consider Fig. 4.2 and the case when the cord is getting pulled down by an ex-
ternal force, such that the length of the cord varies by L(z) = Lye %%, Find the
virtual displacement of the mass.

SECTION 4.5

I1. Find the generalized force associated with the system in Fig. 4.29.

12. The spherical pendulum of mass m shown in Fig. 4.2 has its length being reduced
by a force F, according to the relationship L(t) = Ly — bt, where L is the
initial length and b is a constant. Calculate the generalized forces using spherical
coordinates as generalized coordinates.

13. Consider Fig. 4,13, and calculate the associated generalized forces. The disk is
of mass m and the rod is of mass 2m. There is a moment M acting on the rod at
the pin joint,

SECTION 4.6

i4. For the two links attached to a spring as shown in Fig. 4.31, find the equilibrium
position. The spring is not stretched when the rods are horizontal.

15. Find the equilibrium position of the rod of mass m and length L sliding in the
guide bars shown in Fig. 4.32. The spring is not stretched when the rod is ver-
tical. The sliders are massless and the contact between the horizontal slider and
the guide bar involves friction with coefficient w.

16. Find the equilibrium position for the system shown in Fig. 4.33, with the middle
mass equal to zero. Assume that the displacements are small, and that the springs
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0

Figure 4.31 Figure 4.32

deflect only in the vertical direction. Use as generalized coordinates the transla-
tion of the center of the rod and the rotation of the rod. Then, use the deflections
of the springs at A and B as generalized coordinates and obtain the equilibrium
configuration. Compare the results.

17. Consider the two systems in Figs. 4.3 and 4.14 and set up the equations to find
the magnitude and direction of the force F necessary to keep the systems at
equilibrium at 6; = 30°, 6, = 15°.

18. Find the equilibrium position of the system in Fig. 4.34.

19. Find the equilibrium position of the pulley system in Fig. 1.77 (Problem 1.36).
Use the constrained coordinate approach.
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SEcTION 4.7

20. Find the equation of motion of the rod in Fig. 4,32 using D’ Alembert’s principle.

21. Find the equations of motion of the pulley system in Fig. 3.40 using D’ Alembert’s
principle. The pulleys are massless.

SECTION 4.8

22. Find the equation of motion of the system mechanism in Fig. 4.34 by Hamilton's
principle.

23. Find the equation of motion of the rod in Fig. 4.32 by Hamilton’s principle.

SECTION 4.9

24, Find the equations of motion of the system in Fig. 4.35 using Lagrange’s equa-
tions.

25. Use Lagrange’s equations to derive the equations of motion for the Foucault’s
pendulum in Chapter 2.

26. Figure 4.36 depicts a simplified illustration of a spacecraft to which a robot arm
is attached at the center of mass. The robot arm moves by a moment 7" exerted
to it at the pin joint by a motor on the spacecraft. Considering only plane motion
for both the spacecraft and the robot arm, derive the equations of motion by
a. Separating the two masses, writing force and moment balances, and

eliminating constraints.
b. Using Lagrange’s equations. Compare the complexity in both cases.
27. A block of mass m and length L is positioned over a semicircular block

(Fig. 4.37). It is given that friction is sufficient to prevent slipping. Derive
the equation of the rod as it rocks over the semicircular block.

Figure 4.35 Figure 4.36
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A cylinder of mass m, and radius R rolls without slipping on a wedge ot mass
m, (Fig. 4.38). The wedge is moving under the influence of the force F with no
friction. Obtain the equations of motion.

Find the equation of motion of the rod in Fig. 4.32 using Lagrange’s equations.

Find the equations of motion of the pulley system in Fig. 3.40 using Lagrange’s
equations.
Find the equation of motion of the bead in Fig. 4.39 sliding without friction in

the parabolic tube described by z = x*/4, while the tube is rotating about the z
axis with constant angular velocity ().

Find the equations of motion of the system in Fig. 4.33, using Lagrange's equa-
tions. Assume small motions and that the springs and dashpots deflect only ver-
tically.

A particle of mass m is constrained to slide without friction down a channel
attached to a cone spinning with constant angular velocity {), as shown in
Fig. 4.40. Derive the following:

a. A differential equation of motion describing the motion of P using Newton’s

second law.
b. The equation of motion using Lagrange’s equations.

I

Figure 4.39 Figure 4.40
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Figure 4.4 1

Consider the pendulum in Fig. 428 of mass m, L} = L, L, = 2L. The pendu-
lum swings in the plane generated by the column and arm. Derive the equations
of motion, using the pendulum angle # and rotation angle ¢ of the shaft as gen-
eralized coordinates. The combined mass moment of inertia of the column and
arm about the Z axis is 1.

Consider the particle in Problem 3. Find the equations of motion.

SEcTION 4.10

36.

.

38.

9.

21.

Consider the four-bar linkage mechanism in Fig. 4.24 and derive the equations
of motion using constrained generalized coordinates. Consider each link sepa-
rately. A moment M acts on the first link.

Consider the platform robot in Fig. 4.41. Derive the equations of motion using
constrained coordinates for the following cases: (a) each link is considered sepa-
rately; and (b) links | and 2 and links 4 and 5 are each considered as one system
each.

Given the two-link system in Fig. 4.3, derive the equations of motion using the
constrained coordinate formulation and using as generalized coordinates 64, 0.
xp, and yp. Calculate the kinetic energy of the second link using the motion of
its center of mass, expressed in terms of #,, xp, and yp.

Consider the vehicle in Fig. 4.8. We are given the constraint that the velocity
of the tip of the vehicle, that is, point £, is along the x direction. Derive the
equations of motion using constrained generalized coordinates.

. Consider the pendulum in Fig. 4.28. The angular velocity of the column is kept

constant at ¢ = {) by a motor that generates a moment about the Z axis. Find the
equation of motion of the pendulum and using the constraint relaxation method
find the moment necessary (o maintain the constant angular velocity of the col-
umn.

Find the equation of motion of the rod in Fig. 4.32 using the constraint relaxation
method.
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