Vibration Mechanics Hw #2

(Free Vibration of SDOF Systems)

Issued: Tue. Mar. 05 2024 Due: Wed. Mar. 20 2024 18:00

1. Rao P.2.7 natural frequency calculation
\nFor small angular rotation of bar PQ about P,
\n
$$
\frac{1}{Z}(k_{12})_{eg}(\theta l_3)^2 = \frac{1}{Z}k_1(\theta l_1)^2 + \frac{1}{Z}k_2(\theta l_2)^2
$$

\ni.e., $(k_{12})_{eg} = (k_1 l_1^2 + k_2 l_2^2)/l_3^2$
\nLet $k_{eg} = \text{overall spring constant at } \theta$.
\n $\frac{1}{k_{eg}} = \frac{1}{(k_{12})_{eg}} + \frac{1}{k_3}$
\n $k_{eg} = \frac{(k_{12})_{eg}k_3}{(k_{12})_{eg} + k_3} = \frac{\left\{k_1(\frac{l_1}{l_3})^2 + k_2(\frac{l_2}{l_3})^2\right\}k_3}{k_1(\frac{l_1}{l_3})^2 + k_2(\frac{l_2}{l_3})^2 + k_3}$
\n $\omega_n = \sqrt{\frac{k_{eg}}{m}} = \sqrt{\frac{k_1 k_2 l_1^2 + k_2 k_3 l_2^2}{m (k_1 l_1^2 + k_2 l_2^2 + k_3 l_3^2)}}$

1

natural frequency calculation 2. Rao P. 2.16

(2.16)
$$
x_0 = x(t = 0) = -\frac{weight}{k_{\infty}} = -\frac{mg}{4k}
$$

Conservation of momentum:

$$
(M + m)\dot{x}_0 = mv
$$
 or $\dot{x}_0 = \dot{x}(t = 0) = \frac{mv}{M + m}$

Natural frequency:

$$
\omega_{\rm n} = \sqrt{\frac{4k}{M+m}}
$$

Complete solution:

$$
x(t) = A_0 \sin(\omega_n t + \phi_0)
$$

where

 $\ddot{}$

$$
A_0 = \left\{ x_0^2 + \left(\frac{\dot{x}_0}{\omega_n} \right)^2 \right\}^{\frac{1}{2}} = \left\{ \frac{m^2 g^2}{16 k^2} + \frac{m^2 v^2}{(M+m) 4k} \right\}^{\frac{1}{2}}
$$

and

$$
\phi_0 = \tan^{-1}\left(\frac{x_0 \omega_n}{\dot{x}_0}\right) = \tan^{-1}\left(-\frac{mg}{4k}\sqrt{\frac{4k}{(M+m)}}\frac{(M+m)}{mv}\right) = \tan^{-1}\left(-\frac{g\sqrt{M+m}}{v\sqrt{4k}}\right)
$$

 (a) Velocity of hammer = 15 m/s

Mass of hammer, $m = 6$ kg

Mass of anvil, $m = 50$ kg

$$
A_0 = \left\{ \left(\frac{6 \times 9.81}{(4)(17.5 \times 10^3)} \right)^2 + \frac{(6^2)(15^2)}{(56)(70 \times 10^3)} \right\}^{\frac{1}{2}} = 0.0082 \text{ m or } 8.2 \text{ mm}
$$

$$
\phi_0 = \tan^{-1} \left\{ -\frac{9.81\sqrt{56}}{(15)\sqrt{70 \times 10^3}} \right\} = -1.06 \text{ degrees}
$$

÷.

 (b) $x = 0$ at static equilibrium position: $x_0 = x(t = 0) = 0$. Conservation of momentum gives:

$$
M\dot{x}_0 = mv \text{ or } \dot{x}_0 = \dot{x}(t=0) = \frac{mv}{M}
$$

 $\overline{1}$

Complete solution:

$$
x(t) = A_0 \sin (\omega_n t + \phi_0)
$$

where

$$
A_0 = \left\{ x_0^2 + \left(\frac{\dot{x}_0}{\omega_n} \right)^2 \right\}^{\frac{1}{2}} = \left\{ \frac{m^2 v^2(M)}{M^2 4k} \right\}^{\frac{1}{2}} = \frac{mv}{\sqrt{4kM}} = \frac{(6)(15)}{\sqrt{(70 \times 10^3)(50)}} = 0.048 \text{ m or } 48 \text{ mm}
$$

$$
\phi_0 = \tan^{-1} \left(\frac{x_0 \omega_n}{\dot{x}_0} \right) = \tan^{-1}(0) = 0
$$

- natural frequency calculation **3.** Rao P. 2.23
- (a) Neglect masses of rigid links. Let $x =$ displacement of W. Springs are in series.

$$
k_{eq} = \frac{k}{2}
$$

Equation of motion:

$$
m\ddot{x} + k_{eq}x = 0
$$

Natual frequency:

$$
\omega_n = \sqrt{\frac{k_{eq}}{m}} = \sqrt{\frac{k}{2 \ m}}
$$

(b) Under a displacement of x of mass, each spring will be compressed by an an amount:

$$
x_s=x\ \frac{2}{b}\ \bigvee\ \ell^2-\frac{b^2}{4}
$$

Equivalent spring constant:

$$
\frac{1}{2} k_{eq} x^{2} = 2 \left[\frac{1}{2} k x_{s}^{2} \right]
$$

or $k_{eq} = 2 k \left[\frac{x_{s}}{x} \right]^{2} = 2 k \left[\frac{4}{b^{2}} \right] \left(\ell^{2} - \frac{b^{2}}{4} \right) = \frac{8 k}{b^{2}} \left(\ell^{2} - \frac{b^{2}}{4} \right)$

Equation of motion:

$$
m\,\ddot{x}+k_{\text{eq}}\;x=0
$$

Natural frequency:

$$
\omega_n = \sqrt{\frac{k_{eq}}{m}} = \sqrt{\frac{8 k}{b^2 m} \left[\ell^2 - \frac{b^2}{4} \right]}
$$

4. Rao P. 2.40 natural frequency calculation

 \mathbf{A}

$$
\begin{array}{lll}\n\text{minimize} & \text{minimize} \\
\left| \frac{1}{k_1} \right| & \text{minimize} \\
\frac{1}{k_1} \
$$

5. Rao P. 2.46 Equation of motion

Consider the springs connected to the pulleys (by rope) to be in series. Then

$$
\frac{1}{k_{\text{eq}}}=\frac{1}{k}+\frac{1}{5k}\quad\text{or}\quad k_{\text{eq}}=\frac{5}{6}\;k
$$

Let the displacement of mass m be x. Then the extension of the rope (springs connected to the pulleys) = $2 x.$ From the free body diagram, the equation of motion of mass m:

$$
m\ddot{x} + 2k x + k_{eq} (2 x) = 0
$$

or $m\ddot{x} + \frac{11}{3}k x = 0$

6. Rao P. 2.87 Torsional vibration $\widehat{c_{2.67}}$ (a) $\omega_n = \sqrt{\frac{9}{\ell}}$ (b) $m l^2 \ddot{\theta} + \kappa a^2 \sin \theta + mgl \sin \theta = 0$; $m l^2 \ddot{\theta} + (\kappa a^2 + mgl) \theta = 0$
 $\omega_n = \sqrt{\frac{\kappa a^2 + mgl}{m l^2}}$ (c) $m l^2 \ddot{\theta} + k \dot{\alpha} \sin \theta - mgl \sin \theta = 0$; $m l^2 \ddot{\theta} + (k \alpha^2 - mgl) \theta = 0$ $\omega_n = \sqrt{\frac{\kappa a^2 - mg\ell}{m \ell^2}}$ configuration (b) has the highest natural frequency.

Torsional vibration 7. Rao P. 2.90

 J_0 = mass moment of inertia of the ring = 1.0 kg-m².
 I_{os} = polar moment of inertia of the cross section of steel shaft $= \frac{\pi}{32} \left(d_{os}^4 - d_{is}^4 \right) = \frac{\pi}{4} \left(0.05^4 - 0.04^4 \right) = 36.2266 \left(10^{-8} \right) m^4$ I_{ob} = polar moment of inertia of cross section of brass shaft

$$
= \frac{\pi}{32} \left(d_{\text{ob}}^4 - d_{\text{lb}}^4 \right) = \frac{\pi}{32} \left(0.04^4 - 0.03^4 \right) = 17.1806 \left(10^{-8} \right) \text{ m}^3
$$

 k_{ts} = torsional stiffness of steel shaft

$$
=\frac{G_{s} I_{os}}{\ell}=\frac{\left(80 \ (10^{9})\right) \left(36.2266 \ (10^{-8})\right)}{2}=14490.64 \ \mathrm{N-m/rad}
$$

 k_{tb} = torsional stiffness of brass shaft

$$
=\frac{G_b I_{ob}}{\ell}=\frac{(40 (10^9)) (17.1806 (10^{-8}))}{2}=3436.12 N-m/rad
$$

 $k_{t_{eq}} = k_{ts} + k_{tb} = 17,926.76 \text{ N} - \text{m/rad}$

Torsional natural frequency:

$$
\omega_n = \sqrt{\frac{k_{t_{eq}}}{J_0}} = \sqrt{\frac{17926.76}{1}} = 133.8908 \text{ rad/sec}
$$

Natural time period:

÷

$$
\tau_{\rm n} = \frac{2 \pi}{\omega_{\rm n}} = \frac{2 \pi}{133.8908} = 0.04693 \text{ sec}
$$

÷

Equation of motion
\n
$$
J_A \ddot{\theta} = -W d\theta - 2 \times (\frac{1}{3} \theta) \frac{1}{3}
$$

\n $- 2 \times (\frac{21}{3} \theta) \frac{21}{3} - k_t \theta$
\nwhere
\n $J_A = J_G + m d^2 = \frac{1}{12} m l^2 + m \frac{l^2}{36}$
\n $= \frac{1}{9} m l^2$
\n $\therefore \frac{m l^2}{9} \ddot{\theta} + (mgd + 2 \times \frac{l^2}{9} + \frac{8 \times l^2}{9} + k_t) \theta = 0$
\n $\omega_n = \sqrt{\frac{(mgd + \frac{2}{9} \times l^2 + \frac{2}{9} \times l^2 + k_t)}{m l^2}}$
\n $= \frac{1}{9} m l^2$
\n $\omega_n = \sqrt{\frac{mgd + \frac{2}{9} \times l^2 + \frac{2}{9} \times l^2 + k_t}{m l^2}}$
\n $= \sqrt{\frac{9mgd + 10 \times l^2 + 9k_t}{m l^2}}$

For given data.
\n
$$
\omega_n = \sqrt{\frac{9(10)(9.81)(5/6) + 10 (2000)(5)^2 + 9(1000)}{10(5)^2}}
$$
\n= 45.1547 rad

9. Rao P. 2.106 Rayleigh method

 $\frac{1}{2}$

Let m_{eff} = effective part of mass of beam (m) at middle. Thus vibratory inertia Let m_{eff} = effective part or mass or beam (iii) at initiate. Thus vibratory increase
force at middle is due to $(M + m_{eff})$. Assume a deflection shape:
 $y(x,t) = Y(x) \cos (\omega_n t - \phi)$ where $Y(x)$ = static deflection shape due to load middle given by:

$$
Y(x) = Y_0 \left(3 \frac{x}{\ell} - 4 \frac{x^3}{\ell^3}\right); 0 \le x \le \frac{\ell}{2}
$$

where $Y_0 =$ maximum deflection of the beam at middle = $\frac{1}{48 E I}$

Maximum strain energy of beam = maximum work done by force $F = \frac{1}{2} F Y_0$. Maximum kinetic energy due to distributed mass of beam:

$$
=2\left[\frac{1}{2}\frac{m}{\ell}\int_{0}^{\frac{\ell}{2}} y^{2}(x,t)\Big|_{\max} dx\right]+\frac{1}{2}\left(\dot{y}_{max}\right)^{2}M
$$

\n
$$
=\frac{m \omega_{n}^{2}}{\ell}\int_{0}^{\frac{\ell}{2}} Y^{2}(x) dx + \frac{1}{2} \omega_{n}^{2} Y_{max}^{2} M
$$

\n
$$
=\frac{m \omega_{n}^{2}}{\ell}\int_{0}^{\frac{\ell}{2}} Y_{0}^{2}\left(\frac{9 x^{2}}{\ell^{2}}+16 \frac{x^{6}}{\ell^{6}}-24 \frac{x^{4}}{\ell^{4}}\right) dx + \frac{1}{2} Y_{0}^{2} M \omega_{n}^{2}
$$

\n
$$
=\frac{m \omega_{n}^{2} Y_{0}^{2}}{\ell}\left[\frac{9}{\ell^{2}} \frac{x^{3}}{3}+\frac{16}{\ell^{6}} \frac{x^{7}}{7}-\frac{24}{\ell^{4}} \frac{x^{5}}{5}\right]\left[\frac{\ell}{2}+\frac{1}{2} Y_{0}^{2} M \omega_{n}^{2}\right]
$$

\n
$$
=\frac{1}{2} Y_{0}^{2} \omega_{n}^{2}\left[\frac{17}{35} m + M\right]
$$

\nThis shows that $m_{eff} = \frac{17}{35} m = 0.4857 m$.

10. Rao P. 2.130 Viscous free vibration

(a) Viscous damping, (b) Coulomb damping. (i)

- (a) $\tau_d = 0.2$ sec, $f_d = 5$ Hz, $\omega_d = 31.416$ rad/sec.
(b) $\tau_n = 0.2$ sec, $f_n = 5$ Hz, $\omega_n = 31.416$ rad/sec. (iii)
- (ii) (a) $\frac{x_i}{x_{i+1}} = e^{\zeta \omega_n \tau_d}$ ln $\left(\frac{x_i}{x_{i+1}}\right)$ = ln 2 = 0.6931 = $\frac{2 \pi \zeta}{\sqrt{1-\zeta^2}}$
or 39.9590 ζ^2 = 0.4804 or ζ = 0.1096 Since $\omega_{\text{d}} = \omega_{\text{n}}\ \sqrt{1-\varsigma^2}$, we find $\omega_{\rm n} = \frac{\omega_{\rm d}}{\sqrt{1-\epsilon^2}} = \frac{31.416}{\sqrt{0.98798}} = 31.6065 \text{ rad/sec}$ $k = m \omega_n^2 = \left(\frac{500}{9.81}\right) (31.6065)^2 = 5.0916 (10^4) N/m$ $\zeta = \frac{c}{c_c} = \frac{c}{2 \pi \omega}$

Hence $c = 2 \text{ m } \omega_n \zeta = 2 \left(\frac{500}{9.81} \right) (31.6065) (0.1096) = 353.1164 \text{ N} - s/m$

(b) From Eq. (2.135):

$$
k = m \omega_n^2 = \frac{500}{9.81} (31.416)^2 = 5.0304 (10^4) N/m
$$

Using $N = W = 500$ N,

$$
\mu = \frac{0.002 \text{ k}}{4 \text{ W}} = \frac{(0.002) (5.0304 (10^4))}{4 (500)} = 0.0503
$$

11. Rao P. 2.140 Equation of motion

Let δx = virtual displacement given to cylinder. Virtual work done by various forces:

Inertia forces: $\delta W_i = - (J_0 \ddot{\theta}) (\delta \theta) - (\mathbf{m} \ddot{\mathbf{x}}) \delta \mathbf{x} = - (J_0 \ddot{\theta}) (\frac{\delta \mathbf{x}}{\mathbf{R}}) - (\mathbf{m} \ddot{\mathbf{x}}) \delta \mathbf{x}$

Spring force: $\delta W_s = - (k x) \delta x$ Damping force: $\delta W_d = - (c \dot{x}) \delta x$ By setting the sum of virtual works equal to zero, we obtain:

$$
-\frac{J_0}{R}\left[\frac{\ddot{x}}{R}\right]-m\,\ddot{x}-k\,x-c\,\dot{x}=0 \quad \text{or} \quad \frac{3}{2}\,m\,\ddot{x}+c\,\dot{x}+k\,x=0
$$

Or

Newton's second law of motion:

$$
\sum \mathbf{F} = \mathbf{m} \; \ddot{\mathbf{x}} = -\mathbf{k} \; \mathbf{x} - \mathbf{c} \; \dot{\mathbf{x}} + \mathbf{F_f} \qquad (1)
$$

$$
\sum \mathbf{M} = \mathbf{J_0} \; \ddot{\theta} = -\mathbf{F_f} \; \mathbf{R} \qquad (2)
$$

where $F_f =$ friction force.

Newton's second law of motion:
\n
$$
\sum F = m \ddot{x} = -k x - c \dot{x} + F_f
$$
\n
$$
\sum M = J_0 \ddot{\theta} = -F_f R
$$
\nwhere F_f = friction force.
\nUsing $J_0 = \frac{m R^2}{2}$ and $\ddot{\theta} = \frac{\ddot{x}}{R}$, Eq. (2) gives
\n
$$
F_f = -\frac{1}{2 R} \left(m R^2 \right) \frac{\ddot{x}}{R} = -\frac{1}{2} m \ddot{x}
$$
\n(3)

Substitution of Eq. (3) into (1) yields:

$$
\frac{3}{2} \ln \ddot{x} + c \dot{x} + k x = 0 \tag{4}
$$

 (5) The undamped natural frequency is: $\omega_{\rm n}$